
Molecular dynamics Simulation using Verlet

algorithm and linked cells

Computational Statistical Physics, Exercise 7 and 8
Sebastian Keller, sebkelle@ethz.ch

1 Introduction

In this exercise a C++ simulation program was written to simulate the Newtonian dynamics of point-like
particles.

2 Theory

2.1 Verlet propagation

The Verlet scheme for propagating particles over discrete time steps reads:

x(t+ ∆t) = 2x(t)− x(t−∆t) + ∆2t ẍ(t)

2.2 Force calculation

The force acting on every particle can be calculated as:

ẍi =
1

mi

∑
j

fij(t) , fij = −∇V (rij(t))

2.3 Lenard Jones potential

In this simulation the Lenard Jones potential VLJ was used as the potential between the particles.

VLJ = 4ε
[(σ
r

)12 − (σ
r

)6]
2.4 Contact time calculation

The following formula describes the time it takes for two particles to enter and leave their interaction area
(2.5 · σ for the Lenard Jones potential) in a 1D collision.

tc = 2

∫ rmax

rmin

1√
2
µ (E − V (r))

dr,

where µ is the reduced mass of the particles colliding and E the maximum kinetic energy.
This value can be used to estimate the timestep needed for the simulation. In this simulation ∆t = tc/40

was used.

1



3 Implementation details

The simulation code was written in an object oriented style involving the following classes:

• space<P>, templated over the particle type, holds the particles (→ Exercise 7)

• lc_space<P>, linked cell version, as well templated over the particle type (→ Exercise 8)

• point_particle<numeric_t>, a point like particle, which knows about its mass and to Verlet-propagate
itself

• various function objects, like the Lenard Jones potential and bu�ered functors.

3.1 Initialization

I've implemented either placing the particles initially in a 2D square grid (xy plane, for making videos) or
in a 3D cubic grid. Both have spacing of 1σ and random initial speeds between 1 and 0.

3.2 Linked cell method

The lc_space class divides the whole space into smaller boxes of cuto� length 2.5σ. In the force calculation
loop, only particles in the same and in neighboring boxes are considered. After every time step, the list
which stores which particle is in which box has to be updated. This makes the whole simulation scale as
O(n).

3.3 Bu�ered force functor

To avoid recalculating the value of the force at a certain distance for every particle and to avoid calculating
the square root of the distance between two particles, a bu�ered force functor was implemented. Upon
initialization it stores the value of the force for 6000 distances between zero and cuto� in a vector. Its
operator()(x) returns force(

√
x) /

√
x.

3.4 OpenMP parallelization

To reach maximum performance I experimented with OpenMP to parallelize the force calculation. I used
an OpenMP parallel for for the outermost loop of the force function. This means that the total number of
boxes in the space is divided between the di�erent threads. Using OpenMP, a speedup factor of 2 could be
gained with 4 threads.

4 Results

4.1 Energy constancy

Figure 1 shows the evolution of the total energy with time. The simulation included 250 particles over
1000 timesteps. The only di�erence between the two lines is that for the red line all particles in space were
considered to calculate force and potential. In the other case linked cells were used. All the rest like force
and potential functors were the same.

If one runs the simulation for longer time, no more bumps in energy appear in the linked cell version,
i.e. the error made by only considering particles in neighboring boxes seems to depend on the density of the
particles.

Previously a time step value of ∆t = 0.0056 was used, but for ∆t = 0.00188 the precision in total
energy achieved was much higher.

The mistake in the previous version lay in a wrong (constant) prefactor for the kinetic energy.

2



-600

-590

-580

-570

-560

-550

-540

-530

-520

0 100 200 300 400 500 600 700 800 900 1000

en
er
g
y
in

E
H

Time step number, ∆t = 0.00188

MD, 250 particles, 1000 time steps

boxes turned o�
boxes turned on

Figure 1: Evolution of system energy with time

4.2 Movie

For generating a movie, the simulation was initialized with a 2D grid of 25 particles. After every timestep a
frame was output and later converted into an image with gnuplot and assembled to a video with mencoder.

4.3 Performance

The simulation is able to propagate 25000 particles over 1000 time steps in 8.3s (serial), or in 4.3s (OpenMP,
4 threads). The intermediate frames were not written to disc, but to a RAM tmpfs in memory. The
O(n) scaling with the number of particles could be experimentally well con�rmed, thus if one would run the
simulation for 1 day over 1000 time steps, one could simulate 502 million particles (with OpenMP activated).

3


