INHALTSVERZEICHNIS

Übersicht... 1
Inhaltsverzeichnis.. 1
Vorwort... 2
Index der wichtigsten Reaktionen............................. 3
Grundlagen, Randbemerkungen, Nützliches, usw....... 4
pKa-Tabelle.. 4
Schutzgruppen... 5
Infos bezüglich Konrotatorisch / Disrotatorisch........ 10
Eliminierung vs. Substitution: E1 und E2 oder SN1 und SN2 11
Stereochemie: Anti-periplanar und Syn-Periplanar....... 15
Namens-Reagenzie.. 15
Borch-Reagenz.. 15
Jones-Reagenz.. 15
Mannich-Reagenz.. 16
Grubbs-Katalysator.. 16
Eschemoser-Salz... 16
Eliminierungen und Fragmentierungen.................... 17
Regeln: Saytzeff-, Hoffmann und Erlenmeyer-Regel.... 17
Eliminierung: E1.. 19
Eliminierung: E2.. 21
Eliminierung: E1cB... 23
Hofmann-Eliminierung.. 24
Cope-Eliminierung... 25
Tschugajeff-Reaktion.. 27
Selenoxid-Eliminierung... 27
Fragmentierung allgemein (z.T. auch als Grob-Fragmentierung bezeichnet).. 29
Substitutionen... 31
Nukleophile Substitution SN1................................ 31
Nukleophile Substitution SN2................................ 33
Reaktionen von Carboxylverbindungen (allgemein)..... 35
Nukleophile Addition an Carbonyl-C-Atom (allgemeiner Reaktionsmechanismus).. 35
Acetalbildung... 37
Imim-Bildung... 38
Enamin-Bildung... 39
Weitere allgemeine Reaktionen (keine Namensreaktionen)... 41
Einführen von Doppelbindung in β-Ketoester mittels Diselenid... 41
Ozonolyse... 41
Namensreaktionen.. 43
Paal-Knorr-Synthese... 43
Williamsonische Ethersynthese................................ 44
Ritter-Reaktion... 45
Grignard-Reaktion.. 46
Grignard-Reduktion.. 48
Grignard-Enolisierung.. 48
Wittig-Reaktion.. 48
Schlosser-Variante der Wittig-Reaktion........................ 50
Wittig-Homer-Reaktion... 52
Weinreb-Amid-Methode und Weinreb-Keton-Synthese... 54
Gabriel-Synthese.. 56
Knoevenagel-Reaktion.. 57
Mannich-Reaktion... 59
Claisen-Umlagerung... 60
Claisen-Kondensation.. 63
Dieckmann-Kondensation...................................... 64
Darzens-Glycidestersynthese................................ 64
Strecker-Synthese.. 66
Jones-Oxidation... 67
Corey-Kim-Oxidation.. 67
Swern-Oxidation.. 68
Dess-Martin-Oxidation... 70
Oppenauer-Oxidation = Meerwein-Ponndorf-Verley-Reduktion (MPV) ... 70
Shapiro-Reaktion, ein Spezialfall der Bamford-Stevens-Reaktion... 72
Birch-Reduktion... 74
Die folgende Übersicht ist als Lernhilfe für die Bachelorprüfung Teil A bezüglich des Vorlesungsstoffes OC I (Prof. Diederich) und OC II (Prof. Seeberger) gedacht. Die Übersicht ergebt natürlich keinen Anspruch auf Vollständigkeit, sollte jedoch die wichtigsten Reaktionen beinhalten. Es wurden vor allem Reaktionen aufgeführt, welche in Übungen und alten Prüfungen verwendet wurden. Auf die Skripts wurde keine Rücksicht genommen!

Neben einigen grundlegenden Zusammenhängen und einigen Reaktionen aus der OC I sind vor allem Reaktionen aus der OC II aufgeführt, da zu diesem Vorlesungsstoffe jede Menge Namensreaktionen gehören.

Zum Nachschlagen von Reaktionen empfiehlt es sich, den Index und nicht das Inhaltsverzeichnis zu verwenden.

Well, then let us synthesize…
<table>
<thead>
<tr>
<th>Index der wichtigsten Reaktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>Acetalbildung</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>Bayer-Villiger-Oxidation</td>
</tr>
<tr>
<td>Birch-Reduktion</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>Claisen-Umlagerung</td>
</tr>
<tr>
<td>Cope-Eliminierung</td>
</tr>
<tr>
<td>Corey-Kim-Oxidation</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>DB in (-Ketoester mittels Diselenid</td>
</tr>
<tr>
<td>Dess-Martin-Oxidation</td>
</tr>
<tr>
<td>Dieckmann-Kondensation</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>Eliminierung E1</td>
</tr>
<tr>
<td>Eliminierung E1cb</td>
</tr>
<tr>
<td>Eliminierung E2</td>
</tr>
<tr>
<td>Enamin-Bildung</td>
</tr>
<tr>
<td>Evans-Mislow-Umlagerung</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>Fragmentierung allg. (Grob-Fragm.)</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>Grignard-Enolisierung</td>
</tr>
<tr>
<td>Grignard-Reaktion</td>
</tr>
<tr>
<td>Grignard-Reduktion</td>
</tr>
<tr>
<td>Grob-Fragmentierung</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>Hofmann-Eliminierung</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>Imin-Bildung</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>Jones-Oxidation</td>
</tr>
<tr>
<td>Julia-Olefinition</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>Knoevenagel-Reaktion</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>Mannich-Reaktion</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Norrish Typ I</td>
</tr>
<tr>
<td>Norrish Typ II</td>
</tr>
<tr>
<td>Nukleophile Substitution SN1</td>
</tr>
<tr>
<td>Nukleophile Substitution SN2</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>Oppenauer-Oxidation</td>
</tr>
<tr>
<td>Ozoneolyse</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>Paal-Knorr-Synthese</td>
</tr>
<tr>
<td>Paterno-Büchi-Reaktion</td>
</tr>
<tr>
<td>Pinakol-Kupplung</td>
</tr>
<tr>
<td>Pinakol-Umlagerung</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>Ritter-Reaktion</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>Schlosser-Variante der Wittig-Reaktion</td>
</tr>
<tr>
<td>Selenoxid-Eliminierung</td>
</tr>
<tr>
<td>Shapiro-Reaktion</td>
</tr>
<tr>
<td>Strecker-Synthese</td>
</tr>
<tr>
<td>Swern-Oxidation</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>Tschugajeff-Reaktion</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>Weinreb-Amid-Methode</td>
</tr>
<tr>
<td>Weinreb-Ketone-Synthese</td>
</tr>
<tr>
<td>Williamssonische Ethersynthese</td>
</tr>
<tr>
<td>Wittig-Horner-Reaktion</td>
</tr>
<tr>
<td>Wittig-Reaktion</td>
</tr>
<tr>
<td>Aldol-Addition</td>
</tr>
<tr>
<td>Aldol-Kondensation</td>
</tr>
<tr>
<td>Appel-Reaktion</td>
</tr>
<tr>
<td>Arbuzov-Reaktion</td>
</tr>
<tr>
<td>Bamford-Stevens-Reaktion</td>
</tr>
<tr>
<td>Beckmann-Umlagerung</td>
</tr>
<tr>
<td>Borch-Reagenz</td>
</tr>
<tr>
<td>Claisen-Kondensation</td>
</tr>
<tr>
<td>Cope-Umlagerung</td>
</tr>
<tr>
<td>Curtius-Umlagerung</td>
</tr>
<tr>
<td>Darzens-Glycidesethesynthese</td>
</tr>
<tr>
<td>Diels-Alder-Reaktion</td>
</tr>
<tr>
<td>En-Reaktion</td>
</tr>
<tr>
<td>Epoxidierung</td>
</tr>
<tr>
<td>Eschenmoser-Salz</td>
</tr>
<tr>
<td>Eschweiler-Claire-Reaktion</td>
</tr>
<tr>
<td>Favorstki-Reaktion</td>
</tr>
<tr>
<td>Fischer-Veresterung</td>
</tr>
<tr>
<td>Gabriel-Synthese</td>
</tr>
<tr>
<td>Grubbs-Katalysator</td>
</tr>
<tr>
<td>Grubbs-Reaktion</td>
</tr>
<tr>
<td>Heck-Reaktion</td>
</tr>
<tr>
<td>Hoffmann-Umlagerung</td>
</tr>
<tr>
<td>Jones-Reagenz</td>
</tr>
<tr>
<td>Leuckart-Wallach-Reaktion</td>
</tr>
<tr>
<td>Lossen-Umlagerung</td>
</tr>
<tr>
<td>McMurry-Reaktion</td>
</tr>
<tr>
<td>Meerwein-Pomtorf-Verley-Reduktion</td>
</tr>
<tr>
<td>Meerwein-Reagenz</td>
</tr>
<tr>
<td>Michael-Addition</td>
</tr>
<tr>
<td>Nazarov-Cyclisierung</td>
</tr>
<tr>
<td>Negishi-Kupplung</td>
</tr>
<tr>
<td>Pauson-Khand-Reaktion</td>
</tr>
<tr>
<td>Payne-Umlagerung</td>
</tr>
<tr>
<td>Pummerer-Umlagerung</td>
</tr>
<tr>
<td>Robinson-Annellierung</td>
</tr>
<tr>
<td>Schmidt-Umlagerung</td>
</tr>
<tr>
<td>Simmons-Smith-Reaktion</td>
</tr>
<tr>
<td>Sonogashira-Kopplung</td>
</tr>
<tr>
<td>Stille-Kupplung</td>
</tr>
<tr>
<td>Suzuki-Kopplung</td>
</tr>
<tr>
<td>Tsuji-Trost-Reaktion</td>
</tr>
<tr>
<td>Vollhardt-Reaktion</td>
</tr>
<tr>
<td>Wagner-Meerwein-Umlagerung</td>
</tr>
<tr>
<td>Wolff-Kishiner-Reaktion</td>
</tr>
<tr>
<td>Wolff-Umlagerung</td>
</tr>
<tr>
<td>Chemische Verbindung</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>H_2SO_4</td>
</tr>
<tr>
<td>H_2CO_3</td>
</tr>
<tr>
<td>$\text{H}_3\text{CNC}_2\text{H}_4\text{O}_2$</td>
</tr>
<tr>
<td>$\text{H}_3\text{CNC}_2\text{H}_4\text{N}_2$</td>
</tr>
<tr>
<td>$\text{H}_3\text{CNC}_2\text{H}_4\text{O}_2$</td>
</tr>
</tbody>
</table>
SCHUTZGRUPPEN
<table>
<thead>
<tr>
<th>Schutzgruppe für</th>
<th>Abk. (Name)</th>
<th>Formel</th>
<th>Installation</th>
<th>Abspaltung</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkohole</td>
<td>Me (Methylather)</td>
<td>-O-Me</td>
<td>Williamson-R. od. Me₂SO₄, Base od. Meerwein-Reag.</td>
<td>konz. HI od. TMS-I, CHCl₃ od. Lewissäure (BB₃)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bn (Benzylether)</td>
<td>-O-CH₂Ph</td>
<td>Base, Benzylbromid od. -chlorid</td>
<td>kat. Hydrierung mit Pd od. Hydrogenolyse mit Na, K od. Li in NH₃(l)</td>
<td></td>
</tr>
<tr>
<td>PMB (para-Methoxybenzylether)</td>
<td>-O-CH₂(p-OMe-Ph)</td>
<td>NaN(SiMe₃)₂, PMBBr</td>
<td></td>
<td>DDQ od. CAN</td>
<td>:red. Öffnung eines Acetals -O-(p-OMe-Ph)-O-R mit DIBAL-H führt auch zu -OPMB</td>
</tr>
<tr>
<td>t-Bu (tert-Butylether)</td>
<td>-O-C(CH₃)₃</td>
<td>2-Methyl-2-propen, Säure (H₂SO₄, BF₃)</td>
<td></td>
<td>TFA od. TMS-I</td>
<td></td>
</tr>
<tr>
<td>MOM (Methoxymethyl ether)</td>
<td>-O-CH₂OCH₃</td>
<td>CI(CH₃)₂OCH₃ und Base (NaH in THF)</td>
<td></td>
<td>50% wäbr. AcOH mit H₂SO₄-Kat. od HCl in MeOH</td>
<td></td>
</tr>
<tr>
<td>MEM (2-Methoxyethoxy-methyl ether)</td>
<td>-O-CH₂OCH₂CH₂OCH₃</td>
<td>NaH od. DlEA, Methoxyethoxy-chlormethyl ether</td>
<td></td>
<td>ZnBr₂ od. TiCl₄ in CH₂Cl₂</td>
<td></td>
</tr>
<tr>
<td>THP (Tetrahydroxyranylether)</td>
<td>-O-2-c-C₃H₉O</td>
<td>DHP, p-Ts-OH</td>
<td></td>
<td>wäbr. Säure</td>
<td>es entsteht Stereozentrum!!!</td>
</tr>
<tr>
<td>Tr (Trityl-)</td>
<td>-O-CPh₃</td>
<td>Tr-Cl, Et₃N, DMAP</td>
<td></td>
<td>saure Bed.</td>
<td>ähnliche Schutzgr.: MMT, DMT, TMT</td>
</tr>
<tr>
<td>Reagenz</td>
<td>Strukturformel</td>
<td>Beschreibung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMS (Trimethylsilylether)</td>
<td>-O-Si(CH₃)₃</td>
<td>Me₂SiCl, Et₃N od. Pyridin (Py) wäßr. od. saure Bed. od. TBAF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TES (Triethylsilylether)</td>
<td>-O-Si(CH₂CH₃)₃</td>
<td>Et₃SiCl od. Et₃SiOTf, Py wäßr. Säure od. Fluorid (TBAF) i.a. etwas stabiler als TMS, bes. gegenüber H₂O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIPS (Triisopropylsilyl-ether)</td>
<td>-O-Si(CH(CH₃)₂)₃</td>
<td>iPr₃SiCl, Imidazol od. DMAP Fluorid (TBAF, aq. HF) schon relativ säure-stabil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBDMS (TBS, tert-Butyl-dimethylsilylether)</td>
<td>-O-Si(CH₃)₂-t-Bu</td>
<td>TBDMS-Cl, Imidazol od DMAP; TBDMS-OTf, 2,6-Lutidin Fluorid (TBAF, KF, aq. HF) stabiler gegen Säure als obige Silylschgr.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBDPS (tert-Butylidiphenylysilylether)</td>
<td>-O-SiPh₂-t-Bu</td>
<td>TBDPS-Cl, Imidazol TBAF ähnlich TBDMS, aber insges. stabiler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ac (Acetatester)</td>
<td>-O-C(O)CH₃</td>
<td>Ac₂O od. AcCl, Pyridin od. Et₃N saure od. basische Hydrolyse; LiAlH₄</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bz (Benzoatester)</td>
<td>-O-C(O)Ph</td>
<td>PhCOCl od. (PhCO)₂O, Et₃N od. Py basische Hydrolyse (K₂CO₃) od. LiAlH₄</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mes (Mesitoatester)</td>
<td>-O-C(O)-C₆H₂-2,4,6-trimethyl</td>
<td>Mes-Cl, Py od. Et₃N LiAlH₄ od. wäßr. KOT-Bu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piv (Pivaloatester)</td>
<td>-O-C(O)-t-Bu</td>
<td>Piv-Cl, Py DIBAL-H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diole

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Strukturformel</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonid (Isopropyliden-)</td>
<td>-O-C(Me₂)-O-</td>
<td>2-Methoxy-1- aq. HCl od. HOAc od.</td>
</tr>
<tr>
<td>Aldehyde und Ketone</td>
<td>Ketale und Acetale</td>
<td>Dithioketale und Dithioacetale</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Benzyldenketon</td>
<td>O-C(H)(Ph)-O-</td>
<td>Cyclohexylidenketon</td>
</tr>
<tr>
<td>propen, HBr od.</td>
<td>-O-C(H)(Ph)-O-</td>
<td>Cyclohexanon, Säure</td>
</tr>
<tr>
<td>Aceton, Säurekat.</td>
<td></td>
<td>Säure</td>
</tr>
<tr>
<td>p-TsOH in MeOH</td>
<td></td>
<td>Säure (TFA, Oxalsre.)</td>
</tr>
<tr>
<td>Alkohole od. Diole,</td>
<td></td>
<td>wäbr. HgCl₂</td>
</tr>
<tr>
<td>Säurekat.</td>
<td></td>
<td>mit Raney-Ni: reduktive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entschwefelung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bn (Benzyl)</td>
</tr>
<tr>
<td>Bn-Cl, K₂CO₃ od.</td>
</tr>
<tr>
<td>Hydroxid</td>
</tr>
<tr>
<td>TMS (Trimethylsilyl)</td>
</tr>
<tr>
<td>TMS-Cl, Et₃N od. Py</td>
</tr>
<tr>
<td>Ac (Acetamid)</td>
</tr>
<tr>
<td>Ac₂O od. AcCl, Py</td>
</tr>
<tr>
<td>od. Et₃N</td>
</tr>
<tr>
<td>Bz (Benzamid)</td>
</tr>
<tr>
<td>Bz-Cl, Py od. Et₃N</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>BOC (tert-Butoxycarbonyl)</td>
</tr>
<tr>
<td>BOC-ON, Et₃N od. BOC₂O</td>
</tr>
<tr>
<td>CBz (Z, Benzylxocar-</td>
</tr>
<tr>
<td>bonyl)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>FMOC (Fluorenylech-</td>
</tr>
<tr>
<td>ylmeth-</td>
</tr>
</tbody>
</table>
Elektrocyclische Reaktionen

Bsp. Ringöffnung von 3,4-Dimethylcyclobuten

\[
\begin{align*}
\text{cis} & \quad \begin{array}{c}
\text{Me} \\
\text{H} \\
\text{Me} \\
\text{H}
\end{array} & \quad 175^\circ C & \quad \begin{array}{c}
\text{Me} \\
\text{H} \\
\text{Me} \\
\text{H}
\end{array} & \quad E,Z
\end{align*}
\]

\[
\begin{align*}
\text{trans} & \quad \begin{array}{c}
\text{Me} \\
\text{H} \\
\text{Me} \\
\text{H}
\end{array} & \quad 175^\circ C & \quad \begin{array}{c}
\text{Me} \\
\text{H} \\
\text{Me} \\
\text{H}
\end{array} & \quad E,E
\end{align*}
\]

gleichsinnige Drehung der Substituenten \(\rightarrow\) konrotatorisch

Elektrocyclische Reaktionen

Bsp. Cyclisierung von Octatrien

\[
\begin{align*}
\text{E,Z,E} & \quad \begin{array}{c}
\text{Me} \\
\text{H} \\
\text{Me} \\
\text{H}
\end{array} & \quad 132^\circ C & \quad \begin{array}{c}
\text{Me} \\
\text{H} \\
\text{Me} \\
\text{H}
\end{array} & \quad \text{cis}
\end{align*}
\]

\[
\begin{align*}
\text{E,Z,Z} & \quad \begin{array}{c}
\text{Me} \\
\text{H} \\
\text{Me} \\
\text{H}
\end{array} & \quad 178^\circ C & \quad \begin{array}{c}
\text{Me} \\
\text{H} \\
\text{Me} \\
\text{H}
\end{array} & \quad \text{trans}
\end{align*}
\]

entgegengerichtete Drehung der Substituenten \(\rightarrow\) disrotatorisch

Elektrocyclische Reaktionen

Betrachtung der Grenzorbitale

Cyclobuten/Butadiensysteme: 4\(\pi\)-Elektronen im \(\text{ÜZ}\)

\[
\begin{align*}
\psi_1 & \quad \text{keine Knotenebene} \\
\psi_2 (\text{HOMO}) & \quad \text{eine Knotenebene}
\end{align*}
\]

\(\Rightarrow\) konrotatorischer Ringschluss

Cyclohexadien/Hexatriensysteme: 6\(\pi\)-Elektronen im \(\text{ÜZ}\)

\[
\begin{align*}
\psi_1 & \quad \text{keine Knotenebene} \\
\psi_2 & \quad \text{eine Knotenebene} \\
\psi_3 (\text{HOMO}) & \quad \text{zwei Knotenebenen}
\end{align*}
\]

\(\Rightarrow\) disrotatorischer Ringschluss

Elektrocyclische Reaktionen

Verallgemeinerung

für stereochemischen Verlauf bei Betrachtung der Symmetrieeigenschaften der Molekülorbitale:

<table>
<thead>
<tr>
<th>Anzahl (\pi)-Elektronen</th>
<th>Stereochemischer Verlauf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4n</td>
<td>konrotatorisch</td>
</tr>
<tr>
<td>4n+2</td>
<td>disrotatorisch</td>
</tr>
</tbody>
</table>

Merkhilfe: vier Elektronen – thermisch – konrotatorisch

Vietkon\(g\)

Sterische Wechselwirkungen spielen bei der Sₙ₁-Substitution nur eine geringere Rolle. Trotzdem treten sterische Wechselwirkungen zwischen dem Nucleophil und den Substituenten des Carbeniumions auf, die sich auf den Übergangszustand des zweiten Schrittes der Sₙ₁- stärker als auf die E₁-Reaktion auswirken und zu einer Bevorzugung der Eliminierung führen können (was nicht bedeutet, dass das E₁-Produkt zum Hauptprodukt werden muss!). Eine Erhöhung der Reaktionstemperatur führt zudem in der Sₙ₁/E₁-Konkurrenz zur deutlichen Bevorzugung der Eliminierung!
Die Energie der Übergangszustände von Sn2- und E2-Reaktionen werden durch mehrere Faktoren unterschiedlich beeinflusst. Zu den wichtigsten für die Sn2/E2-Konkurrenz zählen die Art der zugesetzten Base und die Substratstruktur.

Für die Sn2/E2-Konkurrenz ergeben sich in der Praxis folgende Konsequenzen bezüglich der Art der zugesetzten Base:

Steuerung in Richtung E2-Mechanismus:
- Um die E2-Eliminierung zu begünstigen, kommen möglichst stärkere, nicht nucleophile Basen mit sterisch anspruchsvollen Substituenten zum Einsatz.
- Zu den schwächeren, sterisch anspruchsvollen, nicht nucleophilen Basen gehören z. B. DBN (1,5-Diazabicyclo[4.3.0]nonen) und DBU (1,8-Diazabicyclo[5.4.0]undecen).
- Beispiele für sehr starke, nicht nucleophile Basen sind die Lithiumdialkylamide LDA (Lithiumdisopropylamid) und LHMDS (Lithiumhexamethylendisilazid).
- Mit DBN, DBU, LDA und LHMDS gelingen selbst mit Substraten wie primären und sekundären Alkylhalogeniden und -sulfonaten chemoselektiv E2-Eliminierungen.
- Leicht erhältlich und häufig für chemoselektive (E2 statt Sn2) E2-Eliminierungen wird auch die starke Base Kalium-tert-butanolat eingesetzt.
- Neben diesen zum Teil recht speziellen Basen für schwierige Fälle sind vor allem die leichter erhältlichen Basen Hydroxid, Alkoholat (auch primäre und sekundäre Alkoholate neben Kalium-tert-butanolat) und Amid, die aber oft wesentlich weniger sterisch anspruchsvoll sind, in E2-Eliminierungen von präparativer Bedeutung.

Steuerung in Richtung Sn2-Mechanismus
- Um die Sn2-Reaktion zu begünstigen und die E2-Eliminierung weitgehend zu verhindern, dürfen keine zu starken Basen eingesetzt werden.
- Zwar steigt mit der Basizität im Allgemeinen auch die Nucleophilie, da beide Eigenschaften eng miteinander verknüpft sind, bindende Elektronenpaare korreliert sind. Aber in der Regel wächst die Basizität schneller als die Nucleophilie, d.h. mit steigender Basizität drängt sich die E2-Eliminierung immer mehr in den Vordergrund. Dieser Effekt ist also schon ohne sterisch anspruchsvolle Substituenten zu beobachten.
- Sn2-Reaktionen ohne nennenswerte E2-Eliminierungen als Nebenreaktionen erzielt man daher nur mit guten Nucleophilen, deren Basizität gleichzeitig möglichst gering ist.
- Allerdings ist das Nucleophil für eine Sn2-Reaktion nicht so frei wählbar wie die Base für eine E2-Eliminierung, weil das Nucleophil in einer Sn2-Reaktion im Gegensatz zur Base in einer E2-Eliminierung zum Bestandteil des Produktmoleküls wird. Die Wahl des Nucleophils hängt also auch von der angestrebten Produktstruktur ab.
- Da das elektrophile C-Atom in einer Sn2-Reaktion eine eher weiche Lewis-Säure darstellt, reagiert es ausserdem besonders gut mit einer weichen Lewis-Base. Die besten Voraussetzungen für chemoselektive (Sn2 statt E2) Sn2-Reaktionen bieten somit verhältnismässig schwache, weiche Basen, die gleichzeitig gute Nucleophile sind, d.h. die relativ leicht verfügbare und leicht polarisierbare freie Elektronenpaare besitzen, ohne gleichzeitig eine besonders hohe Basizität aufzuweisen (vgl. dazu: HSAB-Konzept). Dazu zählen z. B. Anionen wie Hydrogensulfid (HS⁻), Alkylsulfid (RS⁻), Iodid (I⁻) und Cyanid (CN⁻).

Die Substratstruktur ist ein wichtiger Faktor in der Sn2/E2-Konkurrenz. In Abhängigkeit von der Anzahl, der Grösse und dem Verzweigungsgrad der Alkylsubstituenten am heteroatomsubstituierten α-C-Atom werden die Reaktionsgeschwindigkeiten der Sn2-Reaktion und der E2-Eliminierung sehr unterschiedlich beeinflusst.

Die Geschwindigkeit der E2-Eliminierung steigt von primären über sekundäre zu tertiären Heteroalkyverbindungen stark an, während sie im Gegensatz dazu bei Sn2-Reaktionen in derselben Reihenfolge abfällt. Daher sind E2-Eliminierungen (E2 statt Sn2) an primären Substraten nur noch durch den Einsatz sterisch besonders anspruchsvoller Basen zu erreichen. Beispiele dafür sind DBN und DBU bei primären Alkylhalogeniden und -sulfonaten oder LDA und LHMDS bei
primären Epoxiden. S\textsubscript{2}2-Reaktionen mit tertiären Heteroalkylverbindungen sind praktisch nicht möglich (im Gegensatz zu S\textsubscript{n}1), selbst dann nicht, wenn nicht das α-C-Atom selbst sondern ein β-C-Atom tertiär ist.
STEREOCHEMIE: ANTI-PERIPLANAR UND SYN-PERIPLANAR

<table>
<thead>
<tr>
<th>Anti-periplanar</th>
<th>Syn-periplanar</th>
<th>Stereochemie nach einer Eliminierung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Die beiden Substituenten, die nach vorne (aus der Bilalebene hinaus) zeigen, werden nach der Eliminierung auf der gleichen Seite der Doppelbindung sein.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Die beiden Substituenten, die nach hinten zeigen (in die Bilalebene hinein), werden nach der Eliminierung auf der gleichen Seite der Doppelbindung sein.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Substituenten, die von der rot markierten Achse aus nach links zeigen, werden nach der Eliminierung auf der gleichen Seite der Doppelbindung sein.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Substituenten, die von der rot markierten Achse aus nach rechts zeigen, werden nach der Eliminierung auf der gleichen Seite der Doppelbindung sein.</td>
</tr>
</tbody>
</table>

Man stelle sich eine Verbindungsebene vor, in welcher die Bindung zu X und die Bindung zu H liegen
Substituenten, die links von dieser Ebene liegen, werden nach der Eliminierung auf der gleichen Seite der Doppelbindung sein.
Substituenten, die rechts von dieser Ebene liegen, werden nach der Eliminierung auf der gleichen Seite der Doppelbindung sein.

BORCH-REAGENZ

Das Borchreagenz ist Natriumcyanoborhydrid, also NaBH₃CN

\[\begin{align*}
\text{Na} & \quad \text{H} \quad \text{BH}_2\text{CN} \\
\end{align*} \]

Typische Reaktion

Das Borch-Reagenz wird vor allem bei reduktiven Aminierungen eingesetzt:

\[\begin{align*}
R'\text{H}_2\text{N} & \quad \text{R''CHO} \\
+ & \quad \text{H}^+ \\
- & \quad \text{H}_2\text{O} \\
\end{align*} \]

\[\begin{align*}
\text{H} & \quad \text{R'} \quad \text{R''} \\
\text{H} \quad \text{BH}_2\text{CN} & \quad \text{R''} \\
\end{align*} \]

JONES-REAGENZ

CrO₃ / Verdünnte Schwefelsäure (H₂SO₄) / Aceton

MEERWEINS-REAGENZ

\[
\text{Et}_3\text{O}^+\text{BF}_4^- + \text{EtO}^+ \xrightarrow{\text{Et}} \text{Et}_2\text{O}
\]

Typische Reaktion

\(\text{Et}_3\text{O}^+\) wirkt als Elektroohil und kann zum Beispiel mit einem Amid reagieren.

\[\text{O}^+ \quad \text{Et} \quad \text{EtO}^+ \quad \text{Et} \quad \text{EtO}^+ \quad \text{Et} \quad \text{H}_2\text{O}^+ \quad \text{OEt} \quad \text{Et} \quad \text{OEt} \]

GRUBBS-KATALYSATOR

\[
P(\text{Cy})_2 \quad \text{P(Ph} \quad \text{Ru} \quad \text{P(Pr)}_2
\]

☞ Für Reaktion siehe unter Jones-Oxidation auf Seite 106.

ESCHEMOSER-SALZ

\[
\text{H}_2\text{C}=\text{N}\quad \text{H} \quad \text{H} \quad \text{H} \quad \text{H} \quad \text{H} \quad \text{H}
\]

Das Eschemmoser-Salz wird in der Regel für Mannich-Reaktionen eingesetzt:

☞ Siehe auch Seite 59 bezüglich Mannich-Reaktion
Saytzeff-Regel
Saytzeff-Regel besagt, dass basenkatalysierte Eliminierungen nach E₂ (bimolekulare Eliminierungen, d.h. zwei Moleküle sind beteiligt) so ablaufen, dass die thermodynamisch günstigere Doppelbindung entsteht, also die höher substituierte.

![Saytzeff-Regel Beispiel](image)

Beim Einsatz von sterisch gehinderten Basen ist die Aktivierungsenergie-Barriere für die Reaktion an den zugänglicheren Protonen merklich niedriger:

![Hofmann-Regel Beispiel](image)

Hofmann-Regel

Hofmann-Eliminierungen:

![Hofmann-Eliminierung Beispiel](image)

Esterpyrolyse:

![Esterpyrolyse Beispiel](image)

(Hier muss zugleich der sechsgliedrige Übergangszustand möglich sein)

Erlenmeyer-Regel
In der Regel sind zwei Hydroxygruppen an einem C-Zentrum instabil und es entsteht eine Carbonylgruppe unter Wasser-Eliminierung.

Beispiel:
Charakteristisch für die E_1-Eliminierung ist der Verlauf über ein Carbenium-Ion als Zwischenstufe. Dieser Mechanismus wird also bevorzugt an solchen Molekülen ablaufen, die leicht Carbenium-Ionen bilden können. Im ersten Schritt der Reaktion wird die Abgangsgruppe X unter Bildung des Carbenium-Ions abgespalten. Diese Dissoziation ist gleichzeitig der geschwindigkeitsbestimmende Schritt. Da die Base an diesem Schritt nicht beteiligt ist, spielt ihre Konzentration für die Geschwindigkeit der gesamten Reaktion keine Rolle.

Im 2. Schritt greift die Base ein Proton am benachbarten C-Atom an. Die C-H-Bindung wird gespalten und Olefin gebildet.

Das Carbenium-Ion ist nicht nur in der Lage, verschiedene Eliminierungsprodukte zu bilden, sondern es sind auch Substitutionsreaktionen oder Umlagerungen möglich. Deshalb ist die E_1-Eliminierung in der préparativen organischen Chemie von geringer Bedeutung. Durch die Wahl der Reaktionsbedingungen (z.B. durch den Einsatz einer sperrigen Base) kann die Reaktion im Labor so gesteuert werden, dass sie nach dem E_2-Mechanismus abläuft.

Da die Base jedes beliebige benachbarte Proton aus dem Carbenium-Ion entfernen kann, erhält man bei einer E_1-Eliminierung stets Produktgemische. Betrachtet man die Eliminierung eines 2-substituierten Hexans, sind beispielsweise drei verschiedene Produkte möglich:

Die isomeren Alkene entstehen in unterschiedlichen Mengen. Dabei fällt auf, dass die thermodynamisch stabileren - also höher substituierten - Alkene stets in höheren Ausbeuten gebildet werden. Das stabilste Isomer bildet den größten Anteil (Saytzeff-Regel). Für die Dehydrohalogenierung eines 2-substituierten Hexans wurden folgende Produktverhältnisse gefunden:

<table>
<thead>
<tr>
<th>X</th>
<th>Base</th>
<th>Produktverteilung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Iodid</td>
<td>19 % 63 % 18 %</td>
</tr>
<tr>
<td>I</td>
<td>MeO⁻, MeOH</td>
<td>33 % 50 % 17 %</td>
</tr>
</tbody>
</table>

Die stabileren, höher substituierten 2-Hexane werden in wesentlich grössemem Umfang gebildet als das 1-Hexen. Die Ausbeute von 1-Hexen fällt beim Chlorhexan höher aus als beim Iodhexan, weil Iodid eine bessere Abgangsgruppe darstellt als Chlorid. Eine schlechte Abgangsgruppe begünstigt den E_2-Mechanismus, was dazu führt, dass eher terminale Doppelbindungen gebildet werden (da die Base aus sterischen Gründen eher ein terminales H-Atom
abstrahiert.) Eine gute Abgangsgruppe begünstigt den E, -Mechanismus, und das gebildete Carbenium-Ion bildet eher das höhersubstituierte Alken, weil es termodynamisch stabiler ist.
Die \(\text{E}_2 \)-Eliminierung verläuft konzertiert in einem einzigen Reaktionsschritt. Dabei wird - anders als bei der \(\text{E}_1 \)-Eliminierung - ein einziger Übergangszustand durchlaufen, in dem die Bindungen zu den austretenden Atomen gleichzeitig gelöst werden. Währenddessen bildet sich die π-Bindung.

Der \(\text{E}_2 \)-Mechanismus erfordert eine planare Anordnung der beiden austretenden Gruppen. Dies ist zudem entscheidend für den stere Chernischen Verlauf der Eliminierung. Besonders bevorzugt ist dabei die \text{anti}-Eliminierung, der eine antiperiplanare Anordnung des Protons und der Abgangsgruppe entspricht. Nur in dieser räumlichen Anordnung kann der Übergang von der \(\text{sp}^3 \)-zur \(\text{sp}^2 \)-Hybridisierung ideal verlaufen. Wenn jedoch eine antiperiplanare Ausrichtung aus sterischen Gründen nicht möglich ist, wird die \text{syn}-Eliminierung dominant.

Bei der \(\text{E}_2 \)-Eliminierung kann sich der Übergangszustand prinzipiell in zwei möglichen Orientierungen ausbilden:

Zusätzlich zur Orientierung nach Saytzeff- oder Hofmann-Produkt kann das Saytzeff-Produkt sowohl in \(\text{cis} \)-als auch in \(\text{trans} \)-Form gebildet werden:

Das Verhältnis, in dem \(\text{cis} \)- und \(\text{trans} \)-Isomer gebildet werden, gibt Aufschluss über den Reaktionsverlauf. Wird im gezeigten Beispiel das \(\text{trans} \)-Isomer gebildet, so lag eine \text{anti}-Eliminierung vor, wohingegen das \(\text{cis} \)-Produkt bei einer \text{syn}-Eliminierung entsteht. Die Orientierung der Eliminierung hängt auch von der Abgangsgruppe ab. Normalerweise
erfolgt anti-Eliminierung, aber eine grosse Abgangsgruppe (Trimethylamin, Arylsulfonate) kann aufgrund der sterischen Hinderung die syn-Eliminierung begünstigen.
Eliminierung: E_{1cB}

Unter bestimmten Bedingungen (Vorhandensein einer schlechten Abgangsgruppe, aber eines gut zu eliminierenden Protons) entsteht bei einer E₁-Eliminierung kein Carbenium-Ion, sondern ein Carbanion. Solche Reaktionen werden als E_{1cB}-Reaktionen bezeichnet. Sie haben mit der E₁-Eliminierung das Durchlaufen einer Zwischenstufe gemeinsam. Der erste Schritt der Reaktion besteht jedoch nicht in der Abspaltung der Abgangsgruppe, sondern in der Abstraktion des Protons. Es bildet sich das Carbanion, also die konjugierte Base des Substrates - daher auch der Zusatz "cB" (conjugate base). Erst im zweiten Schritt wird die Abgangsgruppe aus dem Substrat eliminiert.

Der Unterschied der beiden monomolekularen Eliminierungen wird in einer direkten Gegenüberstellung deutlich:

Bei der E_{1cB}-Eliminierung wird zuerst durch die Base zum entsprechenden Anion deprotoniert und dann die Abgangsgruppe X abgespalten. Bei der E₁-Eliminierung spaltet sich im ersten Schritt die Abgangsgruppe unter Bildung eines Kations ab und dann folgt die Deprotonierung. Voraussetzung für die E_{1cB}-Eliminierung ist die Bildung eines stabilen Carbanions. In vielen Fällen dient eine stark elektronenziehende und nicht allzu gute Abgangsgruppe (sonst erfolgt E₁-Eliminierung) wie etwa Fluorid zur Stabilisierung der anionischen Zwischenstufe, bevor sie als Abgangsgruppe fungiert. Neben der stark elektronenziehenden Abgangsgruppe begünstigt eine starker Base ebenfalls den E_{1cB}-Mechanismus. Anders als bei der E₁-Eliminierung ist die Bildung eines weniger substituierten Alkens thermodynamisch günstiger:

Die Hofmann-Eliminierung ermöglicht die Darstellung niedrig substituierter Olefine.

\[
\begin{align*}
\text{NH}_2 & \quad 1. \text{CH}_3I \\
& \quad 2. \text{Ag}_2\text{O}, \text{H}_2\text{O}, \Delta
\end{align*}
\]

Mechanismus

Im ersten Teilschritt muss durch eine "erschöpfende Methylierung" ein Ammoniumsalz hergestellt werden - sozusagen die Abgangsgruppe:

\[
\begin{align*}
\text{H} & \quad \text{N} \quad \text{H} \\
& \quad 3 \text{H}_3\text{C} \text{CH}_3 \quad -2 \text{HI}
\end{align*}
\]

Die Hofmann-Eliminierung verläuft *anti*, als Base greift ein Hydroxid-Ion an, welches aus Silber(I)-Oxid (eine schwache Base) freigesetzt wurde:

\[
\begin{align*}
\text{I}^- & \quad \text{H} \quad \text{H} \quad \text{H} \quad \text{OH} \\
& \quad -\text{H}_2\text{O} / \cdot \text{I}^-
\end{align*}
\]

Nucleophile Substitution an C-α (S_N2) kann als Nebenreaktion auftreten.

Da die sterischen Verhältnisse im Übergangszustand ausschlaggebend sind, findet die Eliminierung bevorzugt nach den Hofmann-Regeln statt.

Beispiel:

\[
\begin{align*}
\text{Me} & \quad \text{Me} \quad \text{Me} \\
\text{H} & \quad \text{H} \quad \text{H} \\
\text{Me}_3\text{N}^+ & \quad \text{OH} \\
& \quad -\text{H}_2\text{O} / \cdot \text{Me}_3\text{N}
\end{align*}
\]
COPE-Eliminierung

In dieser Reaktion werden N-Oxide durch Erwärmen zu Olefinen umgesetzt.

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{Ph} \quad \text{Ph} \\
\text{Ph} & \quad \text{H} & \quad \text{N} & \quad \text{O} & \quad \text{Ph} & \quad \text{N} & \quad \text{O} & \quad \text{Ph} & \quad \text{H} \\
\text{H}_3\text{C} & \quad \text{Ph} & \quad \text{Ph} & \quad \text{CH}_3 & \quad \text{N} & \quad \text{O} & \quad \text{Ph} & \quad \text{N} & \quad \text{O} & \quad \text{Ph} & \quad \text{H} \\
\end{align*}
\]

Mechanismus

Die benötigten N-Oxide sind durch Oxidation von tertiären Aminen erhältlich:

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{Ph} \quad \text{Ph} \\
\text{Ph} & \quad \text{H} & \quad \text{N} & \quad \text{CH}_3 \\
\end{align*}
\quad \xrightarrow{\text{H}_2\text{O}_2}
\quad \begin{align*}
\text{H}_3\text{C} & \quad \text{Ph} \quad \text{Ph} \\
\text{Ph} & \quad \text{H} & \quad \text{N} & \quad \text{O} & \quad \text{Ph} & \quad \text{N} & \quad \text{O} & \quad \text{Ph} & \quad \text{H} \\
\end{align*}
\]

Die Cope-Eliminierung verläuft syn (oder cis) über einen fünfgliedrigen Übergangszustand:

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{Ph} \quad \text{Ph} \\
\text{Ph} & \quad \text{H} & \quad \text{N} & \quad \text{CH}_3 \\
\end{align*}
\quad \xrightarrow{}
\quad \begin{align*}
\text{H}_3\text{C} & \quad \text{CH}_3 \\
\text{Ph} & \quad \text{Ph} \\
\text{OH} & \quad \text{CH}_3 \\
\end{align*}
\]

Beispiele zur Selektivität:

Beispiel:

\[
\begin{align*}
\text{NO(C}_2\text{H}_3}_2 & \quad \xrightarrow{}
\text{C}_6\text{H}_{11} \quad + \quad \text{C}_6\text{H}_{11} \\
\text{36 %} & \quad \text{64 %} \\
\end{align*}
\]

Beispiel:

\[
\begin{align*}
\text{NO(C}_2\text{H}_3}_2 & \quad \xrightarrow{}
\text{C}_6\text{H}_{11} \quad + \quad \text{C}_6\text{H}_{11} \\
\text{0 %} & \quad \text{100 %} \\
\end{align*}
\]

Beispiel:

\[
\begin{align*}
\text{Me} & \quad \text{H} & \quad \text{Me} \\
\text{Me} & \quad \text{N} & \quad \text{O} & \quad \text{H} & \quad \text{Me} \\
\end{align*}
\quad \xrightarrow{- \text{Me}_2\text{NOH}}
\quad \begin{align*}
\text{Me} & \quad \text{H} & \quad \text{Me} \\
\text{Me} & \quad \text{N} & \quad \text{O} & \quad \text{H} & \quad \text{Me} \\
\end{align*}
\]

Zusatz:

OC - Namensreaktionen - Seite 25 - © by Thomi Albrecht
Ähnliche Umsetzungen sind die Hofmann- (verläuft trans!) und Selenoxideliminierung sowie die Tschugajeff-Reaktion.

Eine ähnliche Reaktion ist die Selenoxid-Eliminierung, die unter milderen Bedingungen abläuft.

Beispiel:

\[
\begin{align*}
\text{Selenoxid} & \quad \text{RT} \quad \rightarrow \quad \text{Olef} + \text{Selenol}
\end{align*}
\]

Mechanismus

Das Selenoxid wird durch nucleophile Substitution und anschliessender Oxidation hergestellt - folglich dürfen die Edukte nicht oxidations-empfindlich sein:

\[
\begin{align*}
\text{R-}X & \quad + \quad \text{Se}^- \quad \rightarrow \quad \text{R-Se} \quad \text{-X}^- \quad \rightarrow \quad \text{R-Se} \quad \text{NO}_2 \quad \text{H}_2\text{O}_2 \quad \text{-78°C} \quad \rightarrow \quad \text{R-Se} \quad \text{NO}_2
\end{align*}
\]

Schon bei Raumtemperatur findet eigentliche Eliminierung statt, welche über fünf-gliedrigen Übergangszustand läuft:

\[
\begin{align*}
\text{H-H} \quad \text{O} \quad \text{NO}_2 & \quad \rightarrow \quad \text{R-} \quad + \quad \text{R-Se} \quad \text{NO}_2
\end{align*}
\]

Die Reaktion verläuft syn:
Bei Fragmentierungsreaktionen findet ein Elektronenaustausch derart statt, dass alternierend eine Doppelbindung gebildet wird oder eine Bindung gespalten werden. Aus einem einzigen Molekül entstehen mehrere, kleinere Moleküle (Fragmente).

Fragmentierungen können nur stattfinden, wenn die entsprechende Stereochemie vorhanden ist. Folgende Komponenten müssen jeweils anti-periplanar (ap) zueinander stehen:
- Elektronenpaar, das ganz am Anfang verschoben wird (Ausgangspunkt der Fragmentierung)
- Jede Bindung, die gespalten wird
- Bindung zur Abgangsgruppe

Sind diese Bedingungen erfüllt, kann eine Fragmentierung stattfinden. Beispiel:

Sind die Bedingungen jedoch nicht erfüllt, findet keine Fragmentierung statt. Beispiel:

Weitere Beispiel:
Die Kohlenstoff-Ligand-Bindung wird ohne Einfluss des Nucleophils heterolytisch gespalten, es bildet sich durch Abgabe der Abgangsgruppe ein Carbokation (a), das anschliessend mit dem Nucleophil reagiert und das Substitutionsprodukt bildet (b). Der geschwindigkeitsbestimmende Schritt ist die spontane Spaltung der Kohlenstoff-Ligand-Bindung.

\[
a) \quad \text{C}^\delta + \text{X}^- \rightarrow \text{C}^\gamma \quad \text{b) } \text{C}^\gamma + \text{Nu} \rightarrow \text{C-Nu}
\]

Stereochemie bei der Sn1-Reaktion

Reagiert ein chirales Substrat nach einem Sn1-Mechanismus, werden zwei Produkte gebildet. Eines besitzt die gleiche relative Konfiguration wie das Edukt ("Retention"), das andere ist invertiert ("Inversion"). Bei einer Sn1-Reaktion verlässt die Abgangsgruppe das Substrat bevor das Nucleophil angreift. Das gebildete Carbokation ist trigonal planar und kann deshalb von beiden Seiten her nahezu gleich gut von einem Nucleophil angegriffen werden.

Das Bromid-Ion ist im Gegensatz zum Chlorid-Ion eine sehr gute Abgangsgruppe. In solchen Fällen kommt es zu einer vollständigen Racemisierung. Dieses Ergebnis kann experimentell überprüft werden: Die beiden enantiomeren 1-
Phenylethanole riechen nämlich unterschiedlich. Je nach Startmaterial kann das Produkt also einfach unterschieden werden.

Bei der S_N2-Reaktion nähert sich das Nucleophil von der Rückseite an das Substrat an.

Das nichtbindende n-Orbital des Nucleophils (freies Elektronenpaar) wechselwirkt dabei mit dem antibindenden σ*-Orbital der C-Ligand-Bindung des Substrats. Mit zunehmender Besetzung des antibindenden Orbitals wird die C-Ligand-Bindung geschwächt. Im gleichen Masse wie die neue Nu-C-Bindung gebildet wird, vergrößert sich die Bindungsänge der C-Ligand-Bindung. Durch die steigende Länge der C-Ligand-Bindung beginnen die anderen Gruppen am C-Atom umzuklappen, wie ein Regenschirm.

Das zentrale Kohlenstoffatom ist sp²-hybridisiert und drei verbleibende Substituenten sind planar angeordnet. Die negative Ladung ist auf dem Nucleophil und der Abgangsgruppe lokalisiert. Die Produktbildung erfolgt schließlich durch die vollständige Abspaltung der Abgangsgruppe.

Durch das Umklappen der drei verbleibenden Substituenten im Verlauf der Reaktion kommt es zur Inversion der Konfiguration am zentralen Kohlenstoff (Waldenumkehr). Handelt es sich bei diesem zentralen Kohlenstoff um ein Chiralitätszentrum und wird von einem der beiden Enantiomeren ausgegangen, so wird ein reines Enantiomer mit der spiegelbildlichen absoluten Konfiguration erhalten. Falls das eingetretene Nucleophil die gleiche Priorität wie die Abgangsgruppe besitzt, entsteht aus einem (R)-Molekül ein (S)-Molekül und umgekehrt. Es ist aber zu beachten, dass bei unterschiedlicher Priorität von Nucleophil und Abgangsgruppe durch die Anwendung der Prioritätsregeln bei der (R,S)-, Cahn Ingold Prelog-, CIP-Nomenklatur manchmal bei einer S N 2 -Reaktion aus einer (R)-Verbindung auch wieder
ein (R)-Enantiomer entsteht. Auch hier hat sich die absolute Konfiguration umgekehrt, aber durch die andere Priorität des neuen Substituenten bleibt die Benennung erhalten.
NUCLEOPHILE ADDITION AN CARBONYL-C-ATOM (ALLGEMEINER REAKTIONSMECHANISMUS)

Mechanismus mit Addition als Folgereaktion

Mechanismus mit Substitution (wobei X = Cl, O-COR, OR etc) als Folgereaktion

Beispiele

Säurekatalyse:
Aktivierung der Carbonylgruppe (das rechte Schema zeigt nur den ersten Schritt, also keine Folgereaktion)

Basenkatalyse:
Aktivierung des Nucleophils
Acetalbildung

Aldehyde und Ketone reagieren mit Alkoholen zu Halbacetalen (oder Hemiacetalen) bzw. Halbketalen (Hemiketalen). Der Begriff Acetal wird heute meist auch für Ketale verwendet. Unter Säurekatalyse und Abspaltung von Wasser reagiert das Halbacetal mit einem weiteren Äquivalent Alkohol zum Acetal. Die Abspaltung von Acetalen erfolgt meist unter Einsatz von wässriger Säure H_2O^+, wodurch ein H^+ abgespalten wird!

\[
\text{ROH} + \overset{\text{H}}{\text{CO}} \rightleftharpoons \text{ROH} - \overset{\text{H}}{\text{CO}} \text{H}_2\text{O} \quad \rightarrow \quad \text{RO} \overset{\text{H}}{\text{CO}} \text{OR} \quad \text{Acetal}
\]

Halbacetale reagieren unter Säurekatalyse weiter zu Acetalen (Vollacetalen):

\[
\overset{\text{H}}{\text{RO}} \overset{\text{H}}{\text{CO}} \text{OH} \quad \rightarrow \quad \overset{\text{H}}{\text{RO}} \overset{\text{H}}{\text{CO}} \text{OR} \quad \overset{\text{H}}{\text{RO}} \overset{\text{H}}{\text{CO}} \text{OR} \quad \text{Acetal}
\]

Wie die Halbacetalbildung ist auch die Reaktion zu Acetalen bevorzugt, wenn sie intramolekular unter Bildung von cyclischen Acetalen abläuft. Beispiele:

\[
\text{H} \quad \overset{\text{H}}{\text{RO}} \overset{\text{H}}{\text{CO}} \text{H}_2\text{O} \quad \rightarrow \quad \overset{\text{H}}{\text{RO}} \overset{\text{H}}{\text{CO}} \text{OR} + \text{H}_2\text{O}
\]

Zum Einsatz kommen meist 1,2- oder 1,3-Diole, wie z.B. Ethylen glykol (1,2-Ethandiol) oder Trimethylenglykol (1,3-Propan diol), da sich dann die entsprechenden stabilen Fünf- und Sechsringe bilden.

Die reversible cyclische Acetalbildung wird zum Schützen von Alkoholen, Aldehyden und Ketonen genutzt, indem die zu schützende Gruppe mit H^+ (Säure-Katalyse) zum Acetal umgewandelt wird. Nach der eigentlichen Reaktion wird das Acetal wieder mit wässriger Säure H_2O^+ aufgespalten, wodurch man wieder die ursprüngliche Gruppe erhält. Maskiert als Acetal ist die Carbonylgruppe nicht mehr reaktiv gegenüber Nucleophilen oder auch Oxidationsmitteln. Aldehyde neigen unter stark basischen Bedingungen auch zur Selbstaddition (Aldolreaktion), die man durch Überführen in die entsprechenden Acetale verhindern kann. Acetale sind basenstabil, lassen sich aber mit Säuren wieder in die Carbonylverbindung und den entsprechenden Alkohol zurücküberführen.

Acetale lassen sich auch durch Reaktion von Alkoholen mit Enolethern herstellen.

\[
\overset{\text{H}}{\text{O}} \overset{\text{H}}{\text{CO}} \overset{\text{H}}{\text{O}} + \text{ROH} \quad \overset{\text{H}}{\text{RO}} \overset{\text{H}}{\text{CO}} \text{OR} \quad \overset{\text{H}}{\text{O}} \overset{\text{H}}{\text{CO}} \overset{\text{H}}{\text{O}} + \overset{\text{H}}{\text{O}} + \text{H}_2\text{O}
\]

Wobei folgendes Zwischenprodukt auftritt:

\[
\overset{\text{H}}{\text{O}} \overset{\text{H}}{\text{CO}} \overset{\text{H}}{\text{O}} + \overset{\text{H}}{\text{O}} \quad \rightarrow \quad \overset{\text{H}}{\text{O}} \overset{\text{H}}{\text{CO}} \overset{\text{H}}{\text{O}} \quad \overset{\text{H}}{\text{O}} \overset{\text{H}}{\text{CO}} \overset{\text{H}}{\text{O}}
\]

Imin-Bildung

Mechanismus

Unter neutralen Bedingungen:

Unter Säurekatalyse:

Konkurrenz der Imin- und der Enamin-Bildung

Normalerweise ist die Imin-Bildung gegenüber der Enamin-Bildung bevorzugt, da das H-Atom am Stickstoff acider ist als das am C-Atom und deshalb im Laufe der Eliminierung schneller abgespalten wird.
Enamin-Bildung

Aldehyde und Ketone reagieren mit sekundären Aminen unter Bildung von Immonium-Ionen, die dann zu Enaminen deprotonieren, wenn ein α-H-Atom zur Verfügung steht.

Mechanismus der Bildung von Enaminen

\[
\text{Aldehyd} + \text{Amin} \rightarrow \text{Immonion} \rightarrow \text{Enamin}
\]

Mechanismus der säurekatalysierten Bildung von Enaminen anhand eines Beispiels

Aminal-Bildung

Immonium-Ionen sind aufgrund ihrer positiven Ladung, die über das N- und das C-Atom delokalisiert ist, starke Elektrophile. Wenn keine Stabilisierung durch Deprotonierung eines α-H-Atoms möglich ist, addieren die Immonium-Ionen auch ein zweites Äquivalent Amin und bilden Aminale (oder auch Aminoketale genannt):

\[
\text{Immonion} + \text{Amin} \rightarrow \text{Aminal}
\]

Aminale spielen eine wichtige Rolle bei der Bildung von Hexamethylentetramin und Melaminharzen. Enamine bilden sich in seltenen Fällen auch aus primären Aminen und Carbonylverbindungen; insbesondere dann, wenn das Enamin durch Konjugation stabilisiert wird.

Konkurrenz der Imin- und der Enamin-Bildung
Normalerweise ist die Imin-Bildung gegenüber der Enamin-Bildung bevorzugt, da das H-Atom am Stickstoff acider ist als das am C-Atom und deshalb im Laufe der Eliminierung schneller abgespalten wird.
EINFÜHREN VON DOPPELBINDUNG IN β-KETOESTER MITTELS DISELENID

R''' ist beispielsweise ein Phenylring (Ph)

Mechanismus

OZONOLYSE

Ist einer der zuverlässigsten Wege zur oxidativen Spaltung von Alkenen.

Reagens

Ozon ist ein farbloses, giftiges Gas, das sich in organischen Lösungsmitteln mit blauer Farbe löst. O_3 ist sehr elektrophil und ein starkes Oxidationsmittel. Ozon ist eine 1,3-dipolare Verbindung:

Reaktionsprinzip

Ozon O_3 regiert typischerweise nach einer 1,3-dipolaren Cycloaddition:

Mechanismus

1,3-dipolare Cycloaddition

CHO
CHO
Me-S-Me
oder: Zn / AcOH
oder: H₂/Pt

\[
\begin{align*}
\text{CO}_2\text{H} & \quad \text{CHO} \\
\text{CO}_2\text{H} & \quad \text{CHO}
\end{align*}
\]

reduktive Aufarbeitung

Cycloreversion

ein Primärozonid

(ein Carbonyloxid
(Sehr reaktiver 1,3-Dipol))

1,3-dipolare Cycloaddition

ein Sekundärozonid
(oft isolierbar, häufig explosiv)

oxidative Aufarbeitung
(CrO₃ oder H₂O₂ / NaOH)
Durch die Paal-Knorr-Synthese sind sowohl Pyrrol-, als auch Furan-Derivate zugänglich.

Für die Synthese der Furanabkömmlinge werden 1,4-Ketoverbindungen mit wasserentziehenden Mitteln, wie Zinkchlorid oder Phosphor(V)-oxid, erhitzt. Dabei kommt es zum Schluss des Furanringes, der sich leicht hydrolytisch wieder zum Keton, in essigsaurer Lösung durch Zugabe von wenig Schwefelsäure, öffnen lässt.

Synthese von Heterocyclen aus Diketonen.

Je nach Reaktionsmedium kann man N, S oder O einbauen.

Beispiel mit Mechanismus

Beispiel einer umgekehrten Paal-Knorr-Synthese
Williamsonsche Ethersynthese

Methode, welche besonders zur Synthese von asymmetrischen Ethern geeignet ist.

\[
\text{OH} + \text{K}^- \xrightarrow{\frac{1}{2} \text{H}_2} \text{K}^+ + \text{Er} \xrightarrow{\text{KBr}} \text{O}^- - \text{H}_2
\]

Beachte:
- Anstatt Kalium und Wasserstoff kann auch einfach eine Base eingesetzt werden
- Es kann auch eine Chlor-Verbindung anstatt eine Brom-Verbindung eingesetzt werden

Mechanismus

Sekundäre und tertiäre Halogenide reagieren mehrheitlich unter Eliminierung (\(E_2 \)) zu Alkenen.

Die intramolekulare Williamsonsche Ethersynthese ist möglich, da \(S_{N2} \)-Reaktionen mit Ringschluss (besonders bei 5er und 6er-Ringen) kinetisch stark bevorzugt ist.

Symmetrische und gewisse asymmetrische Ether sind auch ohne Williamsonsche Ethersynthese unter Säurekatalyse zugänglich:

\[
\text{H} + \text{H}^+ \rightarrow \text{H}^+ + \text{H}_2\text{O}
\]

Hierbei ist zu beachten, dass sich bevorzugt das hochsubstituierte Carbokation bildet.
Die Ritter-Reaktion ermöglicht die Umsetzung von Alkoholen oder Alkenen mit Nitrilen zu Amiden. Hierzu ist ein stark saures Medium erforderlich:

\[
R-\overset{\text{H}_2\text{SO}_4}{\text{N}}R' + \overset{\text{H}_2\text{O}}{\text{H}}\rightarrow R-\overset{\text{H}_2\text{O}}{\text{N}}R'
\]

Ritter-Reaktionen können auch mit anderen Edukten durchgeführt werden. (siehe unten)

Mechanismus

Im ersten Schritt der Ritter-Reaktion wird durch Protonierung des Alkohols oder Alkenes ein Carbeniumion gebildet:

\[
\begin{align*}
\text{O} & \quad \overset{\text{H}}{\text{H}} \\
\text{H} & \quad -\overset{\text{H}_2\text{O}}{\text{H}} \\
\text{CH}_2 & \quad \overset{\text{H}}{\text{H}}
\end{align*}
\]

Das Carbeniumion reagiert zusammen mit dem Nitril zu einem Intermediat, das wässrig aufgearbeitet ein Amid ergibt:

\[
\begin{align*}
\text{+} & \quad + \overset{\text{N}}{\text{R}} \quad \rightarrow \quad \overset{\text{+}}{\text{R}} \quad \overset{\text{N}}{\text{R}} \quad -\overset{\text{H}_2\text{O}}{\text{H}} \\
\text{R} & \quad \overset{\text{H}}{\text{N}} \quad \overset{\text{R}}{\text{H}} \quad \overset{\text{H}}{\text{O}} \quad \overset{\text{H}}{\text{O}} \quad \overset{\text{H}}{\text{O}} \quad \overset{\text{H}}{\text{O}} \\
\text{N} & \quad \overset{\text{R}}{\text{R}} \quad \overset{\text{R}}{\text{R}} \quad \overset{\text{H}}{\text{H}} \quad \overset{\text{H}}{\text{H}} \quad \overset{\text{H}}{\text{H}} \quad \overset{\text{H}}{\text{H}} \quad \overset{\text{H}}{\text{H}} \\
\text{O} & \quad \overset{\text{R}}{\text{R}} \quad \overset{\text{R}}{\text{R}} \quad \overset{\text{H}}{\text{H}} \quad \overset{\text{H}}{\text{H}} \quad \overset{\text{H}}{\text{H}} \quad \overset{\text{H}}{\text{H}} \quad \overset{\text{H}}{\text{H}}
\end{align*}
\]

Die Reaktion mit Blausäure (HCN) führt zu Formamiden.

Auch bei anderen Quellen von Carbeniumionen - abgesehen von Alkenen oder Alkoholen - spricht man meistens von Ritter-Reaktionen.
Die C-Mg-Verbindung ist stark polar. Grignard-Verbindungen sind stark nukleophile Reagenzien, die sich mit elektrophilen Substraten umsetzen. Grignard-Verbindungen gehen mit einer Vielzahl weiterer Elektrophile Reaktionen ein, wertvoll sind folgende Umsetzungen:

Mit Säurechloriden zu Ketonen:

\[
\text{RCl + R'} \text{MgBr} \rightarrow \text{R-MgBr} + \text{R'-Cl}
\]

Mit einem zweiten Äquivalent der Grignard-Verbindung läuft die Reaktion zum tertiären Alkohol:

\[
\text{R-O} + \text{R'MgBr} \rightarrow \text{R-O-R'} + \text{MgBrCl}
\]

Die Reaktion von Estern mit Grignard-Reagenzien lässt sich weniger selektiv durchführen, da Ester unreaktiver als Ketone sind. Sie liefern aber mit 2 Äquivalenten Grignard-Reagenz in guten Ausbeuten teriäre Alkohole (Carbinole):

\[
2 \text{RBr} + \text{H}_3\text{C-O-CH}_3 \rightarrow \text{H}_2\text{O} \rightarrow \text{R'-OH}
\]

Nitrile werden zum Imin reduziert, welches nach Hydrolyse Ketone liefert:

\[
\text{R-CN + R'MgBr} \rightarrow \text{R-N-MgBr} \rightarrow \text{R-CO-R'}
\]

Die Umsetzung mit CO\(_2\) (am besten auf pulverisiertem Trockeneis) führt zu Carbonsäuren:

\[
\text{R-MgX} + \text{CO}_2 \rightarrow \text{R-CHO} + \text{MgX}_2
\]

Durch Reaktion mit Epoxiden lassen sich kettenverlängerte Alkohole herstellen. Das Nucleophil greift hierbei an der zugänglicheren Stelle an:
MgBr + Cyclic Ether $\xrightarrow{H_2O}$ Secondary Alcohol
Grignard-Reduktion

Aufgrund sterischer Hinderung wird statt des carbanionischen organischen Rests ein Hydrid aus dessen β-Stellung auf die Carbonylgruppe übertragen (Grignard-Reduktion).

Beispiel

![Grignard-Reduktion Beispiel](image)

Grignard-Enolisierung

Bei noch stärkerer sterischer Hinderung und Abwesenheit eines β-H-Atoms im Grignard-Reagenz erfolgt Abstraktion eines Protons in α-Stellung zur Carbonylgruppe unter Enolatbildung (Grignard-Enolisierung).

Beispiel

![Grignard-Enolisierung Beispiel](image)

Wittig-Reaktion

Mechanismus

Die Reaktion mit dem Ylid führt über einen Vierring (Oxaphosphetan) als Zwischenprodukt, was mittels ³¹P-NMR aufgeklärt wurde. Die offene Zwischenstufe kann synthetisiert werden, doch ist fraglich, ob die gewöhnliche Wittig-Reaktion über das sogenannte Betain läuft.
Die hohe Affinität zwischen Phosphor und Sauerstoff erklärt die Desoxigenierung unter Ausbildung einer Doppelbindung:

Das folgende Schema erläutert die Selektivität der Wittig-Reaktion:

Je reaktiver das Ylid ist (hohe partielle negative Ladung), desto höher ist der Anteil (Z)-Produktes. Vereinfacht kann man sagen, dass nichtstabilisierte Ylide hauptsächlich zu (Z)-Alkenen führen und stabilisierte vorwiegend (E)-Alkene ergeben. Eine Quelle von Verunreinigungen ist die Entstehung von komplexierten Betainen:

Genau diese Nebenreaktion wird allerdings in der Schlosser-Variante ausgenutzt. Durch einen Überschuss Kalium-tert-butanolat wird schliesslich LiBr ausgetauscht, die Reaktion läuft zu Ende.
Die Schlosser-Variante ermöglicht die selektive Darstellung von (E)-Olefinen.

\[
\text{RCO} + \text{PPh}_3 \xrightarrow{\text{LiX}} 1 \text{ eq. PhLi} 1 \text{ eq. OH} \xrightarrow{\text{K}^+} \text{R}
\]

Mechanismus

Die eingesetzten Lithiumsalze bewirken die Bildung von cis- und trans- Lithiobetainen, welche mit Phenyllithium unter "Verlust" eines Stereozentrums zum Oxidoxyld deprotoniert werden können.

Das Oxidoxyld wird stereoselektiv zum trans-Betain protoniert.

Durch einen Überschuss Kaliumbutanolat wird Li⁺ durch K⁺ ausgetauscht. Die Reaktion läuft analog der unmodifizierten Wittig-Reaktion zu Ende:
Wittig-Horner-Reaktion

Reaktion von Aldehyden oder Ketonen mit stabilen Phosphoryliden (Phosphonat-Carbanionen) zu Olefinen.

Die als Edukte benötigten Phosphonsäureester können in der Arbuzov-Reaktion synthetisiert werden.

Mechanismus

Als Basen kommen neben Butyllithium auch Natriumhydrid und Kalium-tert-butanolat in Frage.

Der hohe Grad der Resonanzstabilisierung erhöht die Stabilität der Verbindungen.

Das Ylid greift als Nucleophil die Carbonylkomponente an:

Die hohe Affinität zwischen Sauerstoff und Phosphor führt zu einer Desoxigenierung:

Die Vorteile gegenüber der Wittig-Reaktion sind neben der höheren Stereoselectivität, die Wasserlöslichkeit des entstehenden Lithiumsalzes (in der Wittig-Reaktion resultiert Phosphinoxid, was schlecht chromatatographierbar ist) und die P=O-Aktivierung des Ylides, welche dazu führt, dass auch Ketone in guten Ausbeuten reagieren.
Wittig-Reaktionen haben in der Naturstoffsynthese grosse Bedeutung, wenn Doppelbindungen stereospezifisch synthetisiert werden müssen.

Mechanismus

Die direkte Darstellung von Ketonen aus Säurechloriden und Estern durch Umsatz mit Organylen ist wenig selektiv. Da bei beiden Stoffklassen eine gute Abgangsgruppe vorhanden ist, entsteht ein Keton als Intermediat, welches weiter zum Alkohol abreagieren kann.

Ein Weinreb-Amid besitzt zum einen eine schlechte Abgangsgruppe, zum anderen wird nach der Addition des Organyls ein stabiler Chelatkomplex gebildet:

Durch Hydrolyse wird das Keton aus dem Halbaminal freigesetzt:

Die Weinreb-Methode liefert gute Ausbeuten und ist vielseitig einsetzbar.

Zwei Alternativen sollen kurz vorgestellt werden:

Die Darstellung von Methylketonen aus Säuren ist möglich, da nach der Deprotonierung der Säure die Reaktivität des Lithiumorganyls genügend hoch ist, um an die negativ geladene Gruppe zu addieren:

Reaktionen mit Nitrilen führen über ein schwach elektrophiles Intermediat. Die Reaktion bleibt auf dieser Stufe stehen. Das Keton wird durch Hydrolyse freigesetzt:
Die Gabriel-Synthese ermöglicht die Darstellung von primären Aminen.

\[
R-X + K^+ \cdot \text{N}^+ - \xrightarrow{\text{KOH}} \xrightarrow{-H_2O} R-NH_2
\]

Mechanismus

In der Gabriel-Synthese wird Kaliumphthalimid als NH₂-Synthon benutzt. NH₃ liegt hier in einer geschützten Form vor, die genügend nucleophil ist, mit Halogeniden S₂N₂-artig zu reagieren. Die Umsetzung des neutralen Phthalimid mit Kalilauge zeigt, dass die ungeladene NH-Gruppe sogar sauer ist:

Nach der Reaktion mit einem Halogenid ist das entstehende Zwischen-Produkt wie das unsubstituierte Phthalimid nicht basisch und auch nicht nucleophil:

Eine Hydrolyse ist nur unter drastischen Bedingungen möglich. Weit milder ist die Umsetzung mit Hydrazin:

Die Gabriel-Synthese eignet sich als Fortsetzung der Hell-Volhard-Zelinsky-Reaktion zur Synthese von α-Aminosäuren:

\[
\begin{align*}
\text{R-COOH} & \xrightarrow{\text{PBr}_3, \text{Br}_2} \text{Br-COOR} & \xrightarrow{\text{Gabriel-Synthese}} \text{R-NH}_2 \\
& \xrightarrow{\text{H}_2\text{N-NH}_2} \text{R-COONa} & & \text{R-COOH}
\end{align*}
\]
Kondensation von C-aciden Methylen-Verbindungen mit Aldehyden oder Ketonen zu ungesättigten Verbindungen.

Die Reaktion mit Pyridin, welche zu einer Decarboxylierung führt, wird auch Doebner-Modifikation genannt.

Mechanismus

Die Reaktion verläuft über die Enol-Form:

Das Enol greift als Nucleophil einen Aldehyd (oder ein Keton) an. Additionsschritt wird von einer Kondensation gefolgt:

Es gibt Hinweise, dass an der Reaktion Edukt-spezifisch anstelle des Carbonyls ein Imin teilnimmt:

© by Thomi Albrecht
Malonsäureester können nach einer Verseifung decarboxyliert werden. Wird die Knoevenagel-Kondensation in Pyridin unter Rückfluss ausgeführt (Doebner Modifikation), erfolgt die Decarboxylierung häufig direkt.
Die Mannich-Reaktion ermöglicht die Amino-Methylierung von Aldehyden, Ketonen oder anderer C-acider Verbindungen.

\[
\begin{align*}
\text{H} &\xrightarrow{+ \text{R}_2\text{NH}} \xrightarrow{+ \text{R}^\text{\textbullet} \text{R}'} \text{R}_2\text{N} \\
\end{align*}
\]

Mechanismus

Zuerst bildet sich aus dem Amin (oder Ammoniak) zusammen mit Formaldehyd ein Iminiumion:

\[
\begin{align*}
\text{H} \xrightarrow{+ \text{R}_2\text{NH}} \xrightarrow{+ \text{R}^\text{\textbullet} \text{R}'} \text{R}_2\text{N} \\
\end{align*}
\]

Die C-acide-Verbindung befindet sich in einem Tautomeren-Gleichgewicht. Die Enol-Form greift schließlich das Iminiumion an:

\[
\begin{align*}
\end{align*}
\]
Die aliphatische Claisen-Umlagerung ist eine [3,3]-sigmatrope Umlagerung, in der ein Allylether thermisch zu einer Carbonylverbindung umgesetzt wird.

In der aromatischen Claisen-Umlagerung erfolgt zudem eine Rearomatisierung:

Die Claisen-Umlagerung ermöglicht also durch Veretherung eines Alkoholes (Phenoles) und anschliessender, thermischer Umlagerung eine Verlängerung der C-Kette eines Moleküles.

Mechanismus

Die Claisen-Umlagerung kann als Oxa-Variante der Cope-Umlagerung betrachtet werden.

Mechanismus der Claisen-Umlagerung

© by Thomi Albrecht
Die Wanne ist als Übergangszustand möglich. Sie führt zu Nebenprodukten:

Die aromatische Claisen-Umlagerung wird von einer Rearomatisierung gefolgt:

Ist die ortho-Position substituiert, so kann keine Rearomatisierung erfolgen. Die Allylgruppe muss zuerst noch eine Cope-Umlagerung in die para-Position vollziehen, bevor eine Tautomerisierung möglich ist:

Alle bislang hier beschriebenen Claisen-Umlagerungen benötigen unkatalysiert Temperaturen von > 100°C. Die Erkenntnis, dass elektronenziehende Substituenten an C1 des Vinylteiles einen positiven Einfluss auf die Reaktionsrate und die Ausbeute haben, führte zur Entwicklung der folgenden Varianten:

Ireland-Claisen-Umlagerung

Eschenmoser-Claisen-Umlagerung

Johnson-Claisen-Umlagerung
Die Claisen-Kondensation ermöglicht ausgehend von Estern die Synthese von β-Ketoestern.

\[
\begin{align*}
2 \text{RCO}_2\text{H} + 2\text{NaOEt} &\rightarrow \text{RCO}_2\text{COCR} + 2\text{EtOH} \\
\text{RCO}_2\text{H} + \text{H}_3\text{O}^+ &\rightarrow \text{RCOO}^- + \text{H}_2\text{O}
\end{align*}
\]

Mechanismus

Im ersten Reaktionsschritt bildet sich ein Esterenolat:

![Esterenolat Bild](image)

Das Enolat greift als Nucleophil ein zweites Äquivalent des Esters an:

![Enolat Bild](image)

Da der pKₐ-Wert der Keto-Verbindung bei 11 liegt (EtOH = 16), befindet sich das Gleichgewicht rechts:

![Gleichgewicht Bild](image)

Das Enol des Produktes ist nicht sehr basisch und kommt als Nucleophil nicht in Frage. Besitzt der Keto-Ester keine aciden Protonen, so wird er durch Deprotonierung nicht aus dem vorgelagerten Gleichgewicht entfernt:

![Deprotonierung Bild](image)

Da Ethanolat als Base und als Nucleophil wirkt, ist das Gleichgewicht sogar eher links. Bei dieser Reaktion ist der Einsatz einer starken, nicht nucleophilen Base hilfreich.

Die Dieckmann-Kondensation ist die basenkatalysierte, intramolekulare Reaktion eines Diesters und läuft mechanistisch identisch wie die Claisen-Kondensation ab. Fünf- bis sechsgliedrige cyclische β-Ketoester sind in guten Ausbeuten erhältlich.

\[
\begin{align*}
\text{COOEt} & \quad \text{NaOEt} \quad \xrightarrow{\text{H}_2\text{O}^+} \\
\text{COOEt} & \quad \text{EtO}_2\text{C} \quad \text{CO}_2\text{Et}
\end{align*}
\]

Beispiel

\[
\begin{align*}
\text{EtO}_2\text{C} & \quad \text{CO}_2\text{Et} \quad \text{NaOEt} \quad \xrightarrow{\text{EtOH}} \\
\text{O}^\ominus & \quad \text{Na}^\oplus & \quad \text{MeI} \quad \xrightarrow{- \text{NaBr}} \\
\text{CO}_2\text{Et} & \quad \text{CO}_2\text{Et}
\end{align*}
\]

Darzens-Glyciderestersynthese

\[
\begin{align*}
\text{R}^\ominus \quad + \quad \text{R}^\ominus \quad \xrightarrow{\text{1) NaOH} \quad \text{2) Δ}} \quad \text{R}^\ominus \quad \xrightarrow{\text{R}} \\
\text{R}^\ominus \quad \text{R}^\ominus
\end{align*}
\]

Mechanismus

\[
\begin{align*}
\text{Cl}^- \quad \text{CH}^- \quad \text{CO}_2\text{Et} \quad + \quad \text{EtO}^- \quad \xrightarrow{\text{1) NaOEt} \quad \text{2) OH}^-/\text{H}_2\text{O} \quad \text{3) Δ}} \\
\text{Cl}^- \quad \text{CH}^- \quad \text{CO}_2\text{Et} \quad \text{RCHO} \quad \xrightarrow{\text{OH}^- \quad \text{oder H}_2\text{O}^+} \\
\text{O}^- \quad \text{CO}_2\text{Et} \quad \text{R}^\ominus \quad \text{OH}^- \quad \text{H}^\ominus \quad \text{-CO}_2\text{Et}
\end{align*}
\]

Beispiel

\[
\begin{align*}
\text{CH}_2\text{ClCO}_2\text{Et} \quad \xrightarrow{\text{KO-\text{Bu}, t-BuOH}} \\
\text{CO}_2\text{Et} \quad \xrightarrow{1) \text{OH}^-, 2) \text{H}_2\text{O}^+} \\
\text{CHO}
\end{align*}
\]
Mit Hilfe der Strecker-Synthese lassen sich α-Aminonitrile herstellen, welche zu den entsprechenden Aminosäuren hydrolysiert werden können.

\[
\begin{align*}
\text{RCH}_2\text{H} & \xrightarrow{\text{NH}_3/\text{HCN}} \text{RCH}_2\text{CN} \xrightarrow{\text{H}^+/\text{H}_2\text{O}} \text{RCH}_2\text{COOH} \\
\end{align*}
\]

Mechanismus

Im ersten Schritt kondensiert vermutlich Ammoniak mit dem Aldehyd zum Imin:

\[
\begin{align*}
\text{RCH}_2\text{CN} & \xrightarrow{\text{H}^+} \text{RCH}_2\text{COOH} \\
\end{align*}
\]

Bis hierhin war Säurekatalyse ausreichend. Nun wird bei der Reaktion des Cyanidions als Nucleophil ein Äquivalent Protonen verbraucht. Es ist also nötig - wenigstens in situ - Cyanwasserstoff oder Blausäure herzustellen.

\[
\begin{align*}
\text{RCH}_2\text{CN} & \xrightarrow{\text{H}^+} \text{RCH}_2\text{COOH} \\
\end{align*}
\]

Eine Möglichkeit der in-situ-Darstellung der äußerst giftigen Blausäure (Atemgift) präsentiert sich folgendermassen:

\[
\begin{align*}
\text{NH}_3\text{Cl} + \text{NaCN} & \xrightarrow{\text{NH}_3 + \text{HCN} + \text{NaCl}} \\
\end{align*}
\]

Die Hydrolyse ist optional:

\[
\begin{align*}
\text{RCH}_2\text{CN} & \xrightarrow{\text{H}^+} \text{RCH}_2\text{COOH} \\
\end{align*}
\]
Jones-Oxidation

Oxidation von Alkoholen zum Keton / Aldehyd oder Säure (wenn nicht absolut wasserfrei gearbeitet wird).

Ist Wasser zugegen, so steht der Aldehyd im Gleichgewicht mit dem Hydrat. Dieses wird rasch zur Säure oxidiert.

Als Oxidationsreagenz verwendet man Chromschwefelsäure ($\text{CrO}_3/\text{H}_2\text{SO}_4$) in Aceton.

\[
\begin{align*}
\text{R-CH}_2\text{OH} & \xrightarrow{\text{CrO}_3/\text{Aceton}} \text{R-CH}=\text{O} & \xrightarrow{\text{CrO}_3/\text{langsam}} \text{R-CO}_2\text{H} \\
& & \xrightarrow{\text{CrO}_3/\text{rasch}} \text{H}_2\text{O}
\end{align*}
\]

Corey-Kim-Oxidation

\[
\begin{align*}
\text{Cl-N} & + \text{H}_2\text{C}=\text{S}-\text{CH}_3 & \xrightarrow{1. \text{Toluol, } 0^\circ \text{C}} & \text{RCHO} & + & \text{Cl-CH}=\text{N-H} & + & \text{H}_2\text{C}=\text{S}-\text{CH}_3 \\
& & \xrightarrow{2. \text{RCH}_2\text{OH, } -25^\circ \text{C}} & & & & & \\
& & \xrightarrow{3. \text{Et}_3\text{N}, -25^\circ \text{C}} & & & & & \\
\end{align*}
\]

Sie ähnelt mechanistisch der Swern und der Pfitzner-Moffatt-Oxidation.

Mechanismus

Die Reaktion von N-Chlorsuccinimid mit Dimethylsulfid führt zu einem Chlorsulfonium-Ion, welches mit Alkoholen zu Alkoxy sulfonium-Ionen umgesetzt wird:

\[
\begin{align*}
\text{Cl-N} & + \text{H}_2\text{C}=\text{S}-\text{CH}_3 & \rightarrow & \text{Cl-N} \text{H}_2\text{C}=\text{S}^+\text{CH}_3 & + & \text{H}_2\text{C}=\text{S}^+\text{CH}_3 \\
& & & & & \\
\text{R'-OH} & + & \text{Cl-N} \text{H}_2\text{C}=\text{S}^+\text{CH}_3 & \xrightarrow{-\text{HCl}} & \text{R'-O} \text{H}_2\text{S}^+\text{CH}_3 & + & \text{H}_2\text{C}=\text{S}^+\text{CH}_3 \\
\end{align*}
\]

Durch Zugabe von Base bildet sich ein Schwefelylid, welches umlagert und Dimethylsulfid eliminiert:

Mechanismus

Im ersten Schritt der Reaktion bildet Dimethylsulfoxid mit Oxalylchlorid ein Addukt, welches zu einem Dimethylchlorsulfonium-Ion zerfällt:

Die Reaktion mit einem Alkohol bei -78° führt zu einem Alkoxy sulfoniumion:

Basen - wie tertiäre Amine oder Natriumhydroxid - deprotonieren das Zwischenprodukt zu einem Schwefelylid:

Das Ylid lagert um - es entsteht Dimethylsulfid und ein Carbonyl:

Bei höheren Temperaturen kommt es zu Bildung von gemischten Acetalen als Nebenprodukt:

Das Verwenden von starken Basen führt zur Ausbildung eines Keto-Enol-Tautomerie-Gleichgewichtes. Chirale Edukte mit einem Stereozentrum an C-a können racemisieren. Im ersten Beispiel wurde 8% Racemisierung beobachtet, das zweite zeigt eine Hinderung:
Sterisch anspruchsvolle Amine wie DIPEA helfen die Racemisierung von Aldehyden zu verhindern. Auch das Verdünnen der produkthaltigen Reaktionslösung mit einem pH 7 - Phosphat-Puffer und die Extraktion in Hexan sind effektive Mittel.

\[
\begin{align*}
\text{ROH} + \text{AcO} & \rightarrow \text{RO} + \text{AcO} + 2\text{AcOH}
\end{align*}
\]

Mechanismus

Während der Reaktion wird eine Acetyl-Gruppe des Periodinan-Reagenzes durch einen nucleophilen Angriff des Alkohols ersetzt.

Ein Protonen-Transfer führt zu den Endprodukten:

OPPENAUER-OXIDATION = MEERWEIN-PONNDORF-VERLEY-REDUKTION (MPV)

Als Katalysatoren werden Aluminiumalkoholate eingesetzt. Die Reaktion verläuft über einen sechsgliedrigen Übergangszustand:

Die Openauer-Oxidation (OPP) - die Rückreaktion - hat eine geringere Bedeutung. Sie kann aber durchaus als Alternative zu toxischen Reagenzien (Chrom) und der Swern-Oxidation in Frage kommen. In typischen Oppenauer-
Oxidationen wird ein Überschuss an Aceton eingesetzt, wodurch sich das Gleichgewicht in Richtung des gewünschten Produktes verschiebt.
Shapiro-Reaktion, ein Spezialfall der Bamford-Stevens-Reaktion

Bamford-Stevens-Reaktion ermöglicht Synthese von Alkenen aus Tosylhydrazonen (Derivate von Ketonen und Aldehyden).

\[
\begin{align*}
 & \text{R} - \text{N} = \text{N} - \text{H} - \text{SO}_2 - \text{R}' \\
 & \text{R} \quad \text{Base} \\
 & \quad \text{H}^+ \\
 & \quad \text{N}_2 \\
 & \rightarrow \quad \text{R} - \text{C} = \text{C} - \text{R'} \\
 & \quad \text{SO}_2 - \text{R}'
\end{align*}
\]

Bamford-Stevens-Reaktion kann auf unterschiedliche Arten durchgeführt werden: Mit NaOMe als Base oder mit Lithiumorganylen (Shapiro) und je nach Base mit protischen oder aprotischen Lösungsmitteln. Je nach Edukt resultieren unterschiedliche Produkte.

Mechanismus

Eine starke Base wie Natriummethanolat (NaH, LiH, NaNH₂, LiAlH₄ sind weniger zufriedenstellend) führt zur Deprotonierung des Hydrazons und zur Abspaltung der Tosyl-Gruppe - es entsteht eine isolierbare Diazoverbindung, welche unterschiedlich weiterreagieren kann:

Protische Lösungsmittel "SH" (z.B. Ethylen glykol [1,2-Ethandiol]) können als Protonen-Donoren dienen:

Out dem Diazoniumion wird Stickstoff abgespalten - ein Carbeniumion resultiert. Je nach Stabilität des Ions erfolgt die Eliminierung zur Doppelbindung unselektiv, und es entstehen Gemische von E/Z-Isomeren:

Wird die Reaktion in aprotischen Lösungsmittel (z.B. Triglyme, Decalin) durchgeführt, wird ein Carben gebildet:

Ein Carben ist aufgrund seiner sechs Elektronen-Konfiguration sehr reaktiv - es kommt äußerst schnell zu intramolekularen Umlagerungsreaktionen:

Die Birch-Reduktion erlaubt die Synthese von 1,4-Dienen aus aromatischen Verbindungen.

\[
\text{Benzol} \quad \xrightarrow{\text{Na} / \text{NH}_2, \text{ROH}} \quad \text{1,4-Dien}
\]

Mechanismus

Die Frage, weshalb nicht das 1,3-Dien gebildet wird, was durch Konjugation eigentlich stabiler ist, kann mit den Grenzstrukturen des Dienylcarbanions beantwortet werden:

![Grenzstrukturen](image)

Die Zahlen, welche die Anzahl Bindungen beschreiben, können gemittelt und mit dem 1,3 und 1,4-Dien verglichen werden:

\[
1^{1/3} \quad 1^{2/3} \quad 1^{2/3}
\]

Die Veränderung zum 1,3-Dien ist absolut größer (2) als zum 1,4-Dien (\(\frac{4}{3}\)). Die Reaktion mit der kleinsten Verschiebung der Elektronenverteilung ist also bevorzugt!

Bei +I oder +M-Substituenten verbleibt der Substituent an einer Doppelbindung:

Bei -I oder -M-Substituenten verbleibt der Substituent an der Ringbasis.

Die Reduktion von Benzoësäure ergibt 2,5-Cyclohexadiensäure:

\[
\text{COOH} \quad \xrightarrow{\text{Na}, \text{NH}_3, \text{EtOH}} \quad \text{COOH}
\]

Nur mit dem Aromaten konjugierte Doppelbindungen werden mitreduziert.

\[
\text{Benzol} \quad \xrightarrow{\text{Na}, \text{NH}_3, \text{EtOH}} \quad \text{1,4-Dien}
\]
PINAKOL-KUPPLUNG

Die Pinakol-Reaktion (oder Kupplung) ist eine Ein-Elektronen-Reduktion, die zu 1,2-Diolen führt.

\[
\begin{align*}
\text{Pinakol} & \xrightarrow{\text{Mg}} \text{Mg}^2+ \xrightarrow{\text{O}} \text{O}^- \xrightarrow{\text{O}} \text{O}^-
\end{align*}
\]

Pinakol, wie auch andere hoch-substitutierte 1,2-Diole können unter Säure-Katalyse Wasser abspalten und zu einer Carbonyl-Verbindung umlagern. Pinakol-Umlagerung

Eine Pinakol-Kupplung kann auch unter den Bedingungen TiCl\textsubscript{3} (DME), Zn-Cu, DME, 70 °C oder mit Ti(III)-Salz, THF, 80 °C durchgeführt werden.

PINAKOL-UMLAGERUNG

Säure-katalysierte Dehydratisierung von Pinakol zu t-Butylmethyl-Keton. Diese Reaktion, die mit einer Verschiebung verbunden ist, findet auch bei andern 1,2-Diolen statt.

Mechanismus

Durch Säurekatalyse kann sich Wasser abspalten - es bildet sich ein stabiles Carbeniumion (hoch substituiert):

Das Carbeniumion lagert zu einem Oxoniumion um, welches resonanzstabilisiert ist und aus diesem Grund bevorzugt wird:

Ein Keton entsteht:

Das Verbinden von Pinakol-Reaktion und der säurekatalysierten Umlagerung führt zu interessanten Produkten:
Diese Mehrstufen-Synthese ermöglicht Darstellung von (E)-Alkenen. Addition von Phenylsulfoncarbanionen an Aldehyde o. Ketone führt intermediär zu Alkoholen, die in-situ verestert werden. Im 2. Schritt erfolgt reductive Eliminierung mit Na (Hg)

Eine Alternative ist die modifizierte Julia-Olefinierung, die in einer Stufe zum Olefin führt:

Mechanismus

Die Synthese des Acetoxyphenylsulfones führt zu Diastereomeren:

1. mechanistische Vorschlag führt über flaches Radikal, das um die C-C-Bindung frei rotieren kann. Beide Diastereomeren würden also über dieselbe Zwischenstufe führen. (E)-Selektivität lässt sich mit Hilfe dieses radikalischen ZP erklären.

Carbanion ist weder Konfigurations- noch Konformations-stabil aber bevorzugt die Anordnung, die zu (E)-Alken führt:

Die klassische Julia-Olefinierung mit Na/Hg führt möglicherweise zuerst über eine Eliminierung zum Alkenylsulfon, das durch Ein-Elektronen-Übertragung homolytisch gespalten wird.
Photochemische [2+2]-Cycloaddition eines Carbonyls mit einem Olefin zu einem Oxetan.

\[
\begin{align*}
&\text{\(\text{O} + \text{H}\)} & \xrightarrow{h\nu} & \text{\(\text{O} + \text{H}\)} \\
\end{align*}
\]

Mechanismus
Die in der Paterno-Büchi-Reaktion eingesetzten Carbonyle besitzen in nichtbindenden Orbitalen (\(n\)) und in den Orbitalen der Doppelbindung (\(\pi\)) Elektronen, welche sich durch einfache Massnahmen (UV-Bestrahlung) vom Grundzustand in einen angeregten elektronischen Zustand (\(\pi^*\)) versetzen lassen. Ein vereinfachtes Schema zeigt die möglichen Übergänge:

Obwohl der Übergang eines nichtbindenden Elektrons weniger Energie benötigt, kommt der \(\pi,\pi^*\)-Übergang häufiger vor. Da sich hierbei die Orbitale räumlich näher sind, ist die Wahrscheinlichkeit höher, dass Lichtquanten absorbiert werden. Nach der Anregung kann ein Singulettzustand vorliegen (die Summe der Spins ergibt weiterhin Null) oder ein Triplettzustand.

Reaktionsmechanistisch spielt die Art des Zustandes (je nach Substituenten wird einer bevorzugt) und auch des Überganges keine Rolle. Der Mechanismus lässt sich am besten mit einem Diradikal erklären, welches mit dem Olefin reagiert:

Durch UV-Bestrahlung lässt sich keine Retro-Paterno-Büchi-Reaktion hervorrufen, da die Spaltung der neu gebildeten s-Bindungen bedeutend mehr Energie benötigt.
Photochemische Spaltung von Aldehyden und Ketonen

Die entstehenden Radikale können je nach Substitutionsmuster verschiedene Folgereaktionen eingehen:
Weg a ist eine Rekombination und liefert das Ausgangsmaterial zurück. Bei Zyklischen Molekülen entstehen hier evtl. Isomere!

Norrish Typ II

Photochemische Reaktion von Ketonen

In der Baeyer-Villiger-Oxidation werden Ketone zu Estern beziehungsweise cyclische Ketone zu Lactonen umgesetzt. Als Oxidationsmittel werden Peroxysäuren eingesetzt.

Mechanismus

Die Reaktion läuft über Addition des nucleophilen Sauerstoffs des Peroxids ab - die Reaktivität des Carbonyls wird durch Addition einer Lewis-Säure oder eines Protons erhöht:

In einem zweiten Schritt folgt die Umlagerung eines Substituenten:

Hierbei hängt die Selektivität von der Wanderungsfähigkeit des Substituenten ab:

tert. Alkyl > Cyclohexyl > sek. Alkyl > Phenyl > prim. Alkyl > CH₃

Die Bayer-Villiger-Oxidation eines Aldehydes führt mehrheitlich über Formsäure-Ester. In vielen Fällen kann aber nur der Alkohol isoliert werden.

Beispiele zur Selektivität:
\[
\begin{align*}
\text{Keton} & \quad \text{PhCOODH} \quad \text{CH}_2\text{Cl}_2 \\
\text{Hexan-2-on} & \quad \text{H}_2\text{O}_2 \quad \text{BF}_3 \quad \text{Ether} \\
\end{align*}
\]
Die Wolff-Kishner-Reaktion dient zur Reduktion von Aldehyden und Ketonen zu Alkanen (Desoxigenierung). Mit dieser Reaktion können auch säurelabile Edukte umgesetzt werden (vgl.: Clemmensen-Reduktion).

Mechanismus

Ursprünglich wurden die entstehenden Hydrazone als Zwischenprodukt isoliert, die Reduktion erfolgte anschließend bei 200°C. Heutige Reaktionsführungen ermöglichen die Umsetzung bei Raumtemperatur ohne Isolierung des Hydrazons. Durch Zugabe von Base werden Tautomerisierungen ausgelöst, die dazu führen, dass sich N₂ abspaltet:

Eine moderne Variante führt über das Tosylhydrazon - dieses Beispiel illustriert zudem, wie eine retro-En-Reaktion zu einer Isomerisierung führt:

Das Tosylhydrazon wird unter Abspaltung der guten Tosyl-Abgangsgruppe reduziert:

Hierbei erfolgt der Angriff des Hydrid-Ions stereospezifisch von der weniger gehinderten Seite aus. Die retro-En-Reaktion führt zu einer Umlagerung der Doppelbindung:

Mechanismus
Diodmethan bildet mit Zink / Kupfer oder Zink und Ultraschall (zur Reaktionsbeschleunigung) unterschiedliche Spezies:
2 CH₂I₂ + 2 Zn → 2 ICH₂ZnI ↔ (I₂)₂Zn + ZnI₂

In der Reaktion tritt kein freies :CH₂ als Zwischenstufe auf. Auch wenn nicht genau bekannt ist, welche Spezies aktiv ist, so zeigen folgende Experimente, dass das Carben :CH₂ auszuschliessen ist:

Die Reaktion erfolgt von der sterisch gehinderten Seite, weil das Reagens von der Hydroxygruppe komplexiert werden kann. Ansonsten verlaufen die Additionen im allgemeinen an der ungehinderten Seite.

WAGNER-MEERWEIN-UMLAGERUNG

Intramolekulare Umlagerung bei Wasserabspaltung. Das Molekül lagert so um, daß das stabiler Kation entsteht.
Als Curtius-Umlagerung bezeichnet man den thermischen Abbau eines Säureazides zum Isocyanat.

\[
\begin{align*}
\text{R} & \text{N}_2 \text{O} \xrightarrow{\Delta} \text{R} - \text{N} = \equiv \text{O} \\
\text{R} & \text{N}_3 \xrightarrow{\Delta} \text{R} \text{N} = \equiv \text{O} \xrightarrow{\text{H}_2\text{O}} \text{R} - \text{N} \equiv \text{O}
\end{align*}
\]

Ist Wasser anwesend, so folgt sofort die Weiterreaktion zum Amin. Die gesamte Abfolge wird als Curtius-Reaktion bezeichnet:

\[
\begin{align*}
\text{R} & \text{N}_2 \text{O} \xrightarrow{\Delta} \text{R} - \text{N} = \equiv \text{O} \xrightarrow{\text{H}_2\text{O}} \text{R} - \text{N} \equiv \text{O}
\end{align*}
\]

Über die Curtius-Umlagerung sind Carbamate und Harnstoff-Derivate relativ einfach zugänglich:

Mechanismus

Die benötigten Säureazide sind z.B. durch Reaktion von Natriumazid mit einem Säurechlorid erhältlich:

\[
\begin{align*}
\text{R} & \text{N}_2 \text{O} \xrightarrow{\Delta} \text{R} - \text{N} = \equiv \text{O}
\end{align*}
\]

Das Nitren konnte bislang in der thermischen Zersetzung nicht nachgewiesen werden. So geht man von einer konzertierten Reaktion aus:

\[
\begin{align*}
\text{R} & \text{N}_2 \text{O} \xrightarrow{\Delta} \text{R} - \text{N} = \equiv \text{O}
\end{align*}
\]

Das entstehende Isocyanat kann isoliert werden, wenn die Reaktion in einem inerten Lösungsmittel durchgeführt wurde. Doch ist es praktisch, es in situ mit Nucleophilen reagieren zu lassen:

Die Carbaminsäure decarboxyliert sofort zum Amin:

\[
\begin{align*}
\text{R} & \text{N}_2 \text{O} \xrightarrow{\text{H}_2\text{O}} \text{R} - \text{N} \equiv \text{O}
\end{align*}
\]

Ester der Carbaminsäure (die Carbamate) sowie Harnstoff-Derivate sind allerdings genügend stabil:
Säure-katalysierte Umlagerung eines Ketoximes in ein Amid:

\[
\begin{align*}
R'\text{CH} & \quad \text{H}_2\text{SO}_4 \quad (\text{konz}) \\
\Delta & \quad \rightarrow \\
R'\text{NH} & \quad \text{O} \quad \text{R'}
\end{align*}
\]

Mechanismus

![Mechanismus des Beckmann-Umlagerung](image)

Unter drastisch sauren Bedingungen wird das Oxim aktiviert:

![Aktivierter Oxim](image)

Es erfolgt die Umlagerung des Substituenten trans zur Hydroxygruppe unter Abspaltung von Wasser. Die Heterolyse der N-O-Bindung erfolgt gleichzeitig zur Umlagerung, damit die Bildung eines Nitrens vermieden werden kann:

![Umlagerung des Substituenten](image)

Regioselektivität der Umlagerung spielt in diesem Beispiel eine untergeordnete Rolle. Die in der Caprolactam-Synthese verwendeten Bedingungen würden aber zu einer Isomerisierung bei unterschiedlich substituierten Oximen führen.

Im letzten Schritt der Reaktion kommt es zur Add. von Wasser. Die entstehende Imidsäure tautomerisiert sofort zum Amid.

![Umlagerung zum Amid](image)

Schlüssel zu milder Beckmann-Umlagerungen ist die Derivatisierung der Hydroxy-Gruppe in sehr gute Abgangsgruppen. Ein Standard hierfür ist die Veresterung mit PCl₅:

![Derivatisierung](image)
Wolff-Umlagerung

Ketene aus alpha-Diazoketonen:
Unter Verschiebung eines Restes können alpha-Diazoketone zu Ketenen zersetzt werden.

Diels-Alder-Reaktion

Cycloaddition eines konjugierten Diens mit einem Dienophil (Doppel- oder Dreifach-Bindung).

\[\text{Dien} + \text{Dienophil} \xrightarrow{\Delta} \text{Addukt} \]

\[\text{Dien} + \text{Dienophil} \xrightarrow{\Delta} \text{Addukt} \]
Mechanismus

In der Reaktion sind gleichzeitig 4 Elektronen des Diens und 2 Elektronen des Dienophils involviert, weshalb sie [4+2]-Cycloaddition genannt wird:

Im Übergangszustand werden 2 p- und 1 s-Bindung konzertiert geknüpft:

Eine Voraussetzung ist die Überlappung der Molekülorbitale:

Als Konsequenz der MO-Überlappung kann die Anordnung von Substituenten vorhergesagt werden:

Sind mehrere Übergangszustände möglich, so ist derjenige bevorzugt, bei dem sich der Substituent am Dienophil zum Dien richtet ("endo"). Der Effekt ist elektronischer Natur (sekundäre Orbitalwechselwirkungen).
Von den diastereomeren Racematen des oberen Beispiels wird das endo-Racemat also bevorzugt gebildet.
Die Cope-Umlagerung ist die thermische Isomerisierung von 1,5-Dienen, welche wieder zu 1,5-Dienen führt. Als Hauptprodukt wird das thermodynamisch stabilere Isomer erhalten.

Cope-Umlagerung:

\[
\begin{array}{c}
\text{R-} \quad \underset{\Delta}{\text{\longrightarrow}} \quad \text{R-}
\end{array}
\]

In der Oxy-Cope-Umlagerung findet zudem eine Tautomerisierung zu einer Carbonyl-Verbindung statt. Dieses Endprodukt befindet sich nicht mehr im Gleichgewicht mit den anderen Isomeren, was die Reaktion synthetisch wertvoll macht.

\[
\begin{array}{c}
\text{HO-} \quad \underset{\Delta}{\text{\longrightarrow}} \quad \text{HO--} \quad \underset{\text{O}}{\text{\longrightarrow}}
\end{array}
\]

Die anionische Oxy-Cope-Umlagerung führt über ein Enolat, das aufgrund seiner Konjugation thermodynamisch wesentlich günstiger liegt als das Edukt. Nach wässriger Aufarbeitung ist wie bei der Oxy-Cope-Umlagerung ein Carbonyl erhältlich. Hauptvorteil der anionischen Oxy-Cope-Umlagerung ist aber die Beschleunigung um mehrere Zehnerfaktoren \((10^{17})\) gegenüber der Oxy-Cope-Umlagerung.

Mechanismus

Allyle stabilisieren Radikale, aber auch Ladungen:

\[
\begin{array}{c}
\text{\textbullet} \quad \leftrightarrow \quad \text{\textbullet}-
\end{array}
\]

\[
\begin{array}{c}
\text{\textplus} \quad \leftrightarrow \quad +
\end{array}
\]

\[
\begin{array}{c}
\text{\textdagger} \quad \leftrightarrow \quad \text{\textdagger}-
\end{array}
\]

Es ist deshalb verständlich, dass die zentrale, biarylische Bindung relativ schwach ist (etwa halb so stark wie eine normale C-C-Einfachbindung), was die Cope-Umlagerung ermöglicht. Die eigentliche Reaktion ist eine \([3.3]\)-sigmatrope Umlagerung. Das bedeutet, dass am Ende zweier drei Atome umfassenden Gruppen eine Bindung gebrochen wird und konzertiert am andern Ende eine neue entsteht. Dabei wird ein aromatischer Übergangszustand durchlaufen (= pericyclisch).

\[
\begin{array}{c}
\text{R-} \quad \leftrightarrow \quad \left[\begin{array}{c}
\text{R} \quad \text{R}
\end{array} \right] \quad \leftrightarrow \quad \text{R-}
\end{array}
\]

Während 7-Ringe problemlos mittels Cope-Umlagerung (Divinylcyclopropanumlagerung) erhalten werden, da die Ringspannung des Cyclopropanringes aufgelöst werden kann...

\[
\begin{array}{c}
\end{array}
\]

...so wählt man zur Synthese grösserer Ringsysteme mit Vorteil die (anionische) Oxy-Cope-Umlagerung, da mit dem Enolat und später dem Carbonyl Verbindungen erhalten werden, die thermodynamisch wesentlich günstiger liegen als das Edukt.

\[
\begin{align*}
\text{En} + \text{Y-X} \xrightleftharpoons[\text{Lewissäure}]{\Delta \text{od}} \text{H-Y} \\
\end{align*}
\]

Mögliche Enophile sind Carbonyl- und Thiocarbonyl-Verbindungen, Imine, Alkene und Alkine. Als Lewissäuren kommen unter anderem BF\(_3\), O(CH\(_2\)CH\(_3\))\(_2\), SnCl\(_4\) und Et\(_2\)AlCl\(_2\) zum Einsatz.

Mechanismus

Allyle stabilisieren Radikale, aber auch Ladungen:

Es ist deshalb verständlich, dass die Bindung zum Wasserstoff-Atom, welches wandert, relativ schwach ist. Die eigentliche Reaktion ist wie die Diels-Alder-Reaktion ein pericyclischer Prozess, bei dem 6 Elektronen verschoben werden:

\[
\text{Diels-Alder-Reaktion} \quad \text{En-Reaktion}
\]

Da die allylische \(\sigma\)-Bindung, welche in der En-Reaktion gebrochen werden muss, trotzdem stärker ist als die \(\pi\)-Bindung in der Diels-Alder-Reaktion, ist die Aktivierungsentnergie höher und es wird eine höhere Reaktionstemperatur benötigt. Alkene sind schlechtere Enophile als Alkine. Bei beiden sind hohe Temperaturen und Druck vonnöten, damit eine Reaktion stattfindet. Carbonyle reagieren leichter und nur zu Alkoholen aber nicht zu Ethern, Imin-Derivate können zu Homoallylaminen umgesetzt werden. Doch Thiocarbonyle werden zu allylischen Sulfiden und nicht zu homoallylischen Thiolen umgesetzt.

Gerade die Carbonyl-En-Reaktion kann vom Einsatz von Lewis-Säuren profitieren und findet dann bei Raumtemperatur statt. Neue chirale Kat. ermöglichen sogar die enantioselektive En-Reaktion mit überzeugenden Enantiomerenreinheiten:
5 mol-%

\[
\begin{align*}
\text{5 mol-%} & \\
\text{CHCl}_3, 20^\circ\text{C}, 24\text{ h} & \\
\text{75\% (isol)} & \\
\text{94\% ee}
\end{align*}
\]
[2,3]-Sigmatropic rearrangement of allylic sulfoxides to allylic sulfenates which are captured by thiophiles to generate the allylic alcohols, thereby effecting the 1,3-transposition of sulfoxide and alcohol functions. The reverse process is accomplished by treating the alcohol with arylsulphenyl chloride, followed by thermal rearrangement of the sulfenate to generate the allylic sulfoxide:

\[
\begin{align*}
\text{R} & \quad \text{S} \quad \text{Ar} \\
\text{OH} \quad & \quad \text{thiophil} \\
& \quad \text{ArSCI, (CH}_2\text{CH}_3)_3
\end{align*}
\]

thiophile = P(OCH}_3)_3, (CH}_3CH}_2NH, piperidine, PhS⁻

Michael-Addition

1,4 - Addition von resonanzstabilisierten Carbanionen. Ursprünglich verstand man unter der Michael-Addition eine thermodynamisch kontrollierte Reaktionsführung unter Verwendung besonders acider Ester.

\[
\begin{align*}
\text{Michael-Akzeptor} & \quad + \quad \text{Michael-Donor} \\
\text{NaOEt (kst)} & \quad \text{EtOH} \\
\text{O} & \quad \text{OEt} & \quad \text{OEt} \\
\text{O} & \quad \text{O} & \quad \text{O} & \quad \text{O}
\end{align*}
\]

Mechanismus

Ein Reaktand der Michael-Addtion muss C-acide sein. Geeignete Verbindungsklassen lassen sich aufgrund ihrer pKₐ-Werte in α-Position relativ einfach mit Alkoholaten deprotonieren:

- β-Ketoester
- 1,3-Diketon
- α-Nitroester
- α,α-Dinitril
- α,α-Dinitroverbindung
- und weitere Kombinationen, z.B. Cyanester

Das entstehende Carbanion wird resonanzstabilisiert.
Als weiches Nucleophil greift es α,β-ungesättigte Verbindungen am weicheren electrophilen Zentrum an (HSAB-Prinzip):

Im Unterschied zur Alkylierung von Enolaten mit Alkylhalogeniden ist nur eine katalytische Menge Base notwendig. Die treibende Kraft der Reaktion ist die Bildung einer C-C-σ-Bindung auf Kosten einer π-Bindung.

Beispiele weiterer Michael-Additionen:

- Ein Überschuss der ungesättigten Verbindung führt zu einer Dialkylierung:

- Alkyl- und Dialkylmalonate lassen sich nach einer Esterhydrolyse decarboxylieren:

Auch weniger C-acide Komponenten wie Ketone können gut alkylieren:

Die thermodynamisch kontrollierte Reaktionsführung führt über die höher substituierten Enolate. Die obigen Produkte entstehen folglich bervorzugt.

Die kinetisch kontrollierte Variante ermöglicht Zugang zu weniger günstigen Produkten - sie benötigt allerdings mindestens ein Äquivalent Base, wasserfreie, aprotische Lösungsmittel und tiefe Temperaturen:
Die Olefinmetathese ermöglicht die Umalkylenierung zweier Doppelbindungen.

\[R'\equiv R'' + \underset{\text{Kat}}{\Rightarrow} R'\equiv R'' \]

Die ersten Metathesen wurden in der Petrochemie zur Synthese von höheren Olefinen durchgeführt. Nickel-Katalysatoren mit Phosphor-Sauerstoff-Chelat-Liganden tolerierten zwar schon polare funktionelle Gruppen, aber ihr Haupteinsatzgebiet war die Olefinligomerisation (z.B. Shell higher olefin process), wo sie vorderhand die Synthese von \(>C20\)-Olefinen unter hohem Druck und Temperatur ermöglichten.

In heutigen, industriellen Anwendungen werden Polyene mit einem Molekulargewicht von \(>250'000\) g/mol produziert. Einen grossen Verdienst um die Entwicklung neuer Katalysatoren hat die Caltech-Gruppe um R. H. Grubbs. Für Anwendungen im Labor stehen mittlerweile Systeme zur Verfügung, welche unterschiedliche Probleme lösen - wie: Ringschluss, Ringöffnung - und welche eine grosse Zahl funktioneller Gruppen tolerieren.

Mechanismus

Moderne, homogene Katalysatoren sind Carbenoide des Grubbs-Typ (1 und 2) oder Schrock-Typs (3):

1. \[\text{Grubbs-Katalysatoren (1 und 2) sind unempfindlicher, wohingegen der Schrock-Typ (3) eher für sterisch anspruchsvolle Edukte Verwendung findet.} \]
2. \[\text{In der Initiierung bildet sich aus dem Olefin-Edukt und dem eingesetzten Katalysator ein neues Carbenoid. Als Nebenprodukt entsteht ein resonanzstabilisiertes Olefin (Y = -M-Substituent), welches nicht mehr an der Reaktion teilnimmt.} \]
3. \[\text{Die Reaktion läuft typischerweise über ein Metallacyclobutan. Die Kreuzmetathese (unterschiedliche Olefine als Edukte) verläuft dann über folgenden Katalysator-Zyklus:} \]

\[
2 \text{R'COO}H + \text{NaOH} \rightarrow \text{R'COOR' + } \text{H}_2\text{O} + \text{R'CHO}
\]

Mechanismus

Durch Zugabe von Base werden Enolate gebildet, welche mit einem zweiten Äquivalent Aldehyd oder Keton abreagieren:

Weil Additionsschritt relativ langsam ist, erfolgt häufig eine Aldolkondensation als Folgereaktion, da β-Hydroxycarbonylverbindungen gerne zu α,β-ungesättigten Verbindungen eliminieren (besonders bei hohen Temperaturen).

Säurekat. bewirkt höhere Polarisierung des Elektrophils, als auch Einstellung d. Keto-Enol-Gleichgewichts d. Nucleophils:

Intermolekulare Aldoladditionen von Ketonen sind leicht endotherm (entropisch und enthalpisch ungünstig) und sind deshalb umkehrbar (Retroaldoladdition):

Eine nützliche Reaktion ist die intermolekulare Aldoladdition / Kondensation, die zum Aufbau von 5er und 6er Ringen dient und aufgrund sterischer Eigenschaften nur ein Isomer liefert. Ohne besondere Vorsichtsmassnahmen entstehen die α,β-ungesättigten Verbindungen:
Verwendet man NaOH, KOH, NaOEt, NaOMe als Base ("klassische" Aldoladdition), entstehen in Lösung immer geringe Mengen der möglichen Enolate, von denen nur diejenigen rasch weiterreakieren, die zu 5er- und 6er-Ringen führen.
Aldol-Kondensation

$$
\begin{align*}
2 \quad \text{R}\text{CH}R'' & \xrightarrow{\text{Aldol-Addition}} \quad \text{R}\text{CH}\text{CHR''} \\
\text{R''} \quad \triangle & \quad \text{R}\text{=CHR''}
\end{align*}
$$

Mechanismus

Siehe unter Aldol-Addition auf Seite 108

Henry-Reaktion

Die Henry-Reaktion ist eine basenkatalysierte C-C-Bindungsknüpfung eines Nitroalkanes mit einem Aldehyd oder Keton ähnlich einer Aldoladdition.

$$
\text{R}^\text{NO}_2 + \text{R''} \quad \text{HOH} \quad \text{R''} \quad \xrightarrow{\text{Base (cat)}} \quad \text{R''} \quad \text{N} \quad \text{O}_2 \quad \text{R''}
$$

Mechanismus

Jede zugegebene Base kann sowohl die Aldoladdition und bei Aldehyden eine Cannizarro-Reaktion als auch die Elimination von Wasser aus den Nitroalkanen katalysieren, was Nitroalkene entstehen lässt, welche polymerisieren. Aus diesem Grund müssen bei vielen Edukten unterschiedliche Reaktionsbedingungen getestet werden, und die Kontrolle der Basizität der Reaktionslösung ist unabdingbar.

Einige neuere Arbeiten beschäftigen sich mit der enantioselektiven Henry-Reaktion. Meistens wird der Sauerstoff der Carbonyl-Gruppe durch eine chirale Lewissäure komplexiert, was zum einen die Aktivität des Electrophils erhöht, aber auch die Stereoselektivität erklärt.

$$
\text{H}_3\text{C\text{NO}_2} + \quad \text{CHO} \quad 10 \text{ mol\% Kat.} \quad \text{THF} \quad \xrightarrow{\text{Kat:}} \quad \text{ee: 87%}
$$
Die McMurry-Reaktion ist eine Ein-Elektronen-Reduktion, die unter Desoxigenierung zu Alkenen führt.

\[
2 \begin{array}{c}
\text{O} \\
\end{array} + \text{TiCl}_3 / \text{THF} \rightarrow \begin{array}{c}
\text{O} \\
\end{array} + 3 \text{KCl}
\]

Mechanismus

Die Synthese gehört zu den Carbonyl-Kupplungsreaktionen und läuft im ersten Schritt analog der Pinakol-Reaktion. Ein Ein-Elektronen-Transfer (SET single electron transfer) wird von einer Radikal-Rekombination gefolgt, gleichzeitig wird Titan (III) zu niedervalentem Ti(II) oder Ti(0) reduziert - der Mechanismus ist nicht restlos aufgeklärt:

Eine Triebkraft der Reaktion ist Bildung der stabilen Ti-O-Bindung.

Gemischte Mc-Murry-Kupplungen werden möglich, wenn eine Carbonylkomponente im Überschuss vorliegt:

McMurry-Kupplungen von Aldehyden oder unsymmetrischen Ketonen führen meist zu cis/trans (Z/E)-Gemischen:

Als Reduktionsmittel kommt unter anderem auch LiAlH\(_4\) in Frage. Die geeigneten Kombinationen müssen empirisch ermittelt werden.
Unter Favorskii-Reaktion versteht man die Umlagerung von Cyclopropanylketonen zu Carbonsäuren und ihren Derivaten. Als Edukte können auch α-Halogenketone eingesetzt werden.

Mechanismus

Im ersten Schritt bildet sich ein Hydrat, welches sich zum stabileren Carbanion öffnet (weniger substituiert). Das Carbanion wird protoniert.

Durch Verwenden von Alkoholaten sind Ester erhältlich:

Als Edukte kommen auch α-Halogenide in Frage. Die Base führt zu einem Keto-Enol-Gleichgewicht, wobei die Abspaltung des Protons benachbart zum Halogenid bevorzugt wird, da es saurer ist. Doch nur das weniger günstige Enol reagiert zum gespannten Keton und durchläuft die Favorskii-Reaktion:

Eine wichtige Anwendung ist die Umlagerung unter Ringverengung:

Payne-Umlagerung. Unter basischen Bedingungen gehen Hydroxyepoxide eine stereoselektive Umlagerung durch eine intramolekulare S$_{N}$2-Reaktion ein.

Normalerweise ist das höher substituierte Epoxid stabiler. Ist jedoch zugleich ein starkes Nucleophil anwesend, dann wird in einer intermolekularen S$_{N}$2-Reaktion das terminale Epoxid unter Angriff auf das primäre Kohlenstoff-Atom geöffnet.

Pummerer-Umlagerung

The Pummerer rearrangement is a chemical reaction whereby an alkyl sulfoxide rearranges to an α-acyloxythioether in the presence of acetic anhydride.

Mechanism

The mechanism of the Pummerer rearrangement begins with the acylation of the sulfoxide (1 and 2). Compound 3 undergoes elimination to produce the sulfonium ion 4. Acetate adds to the sulfonium ion to give the final product 5.
Cyclisierung von Divinylketonen

\[
\text{CH}_2=\text{C}(-\text{SnR}_3)_2\xrightarrow{\text{H}_2\text{O}_2} \text{CH}_2=\text{C}(-\text{SnR}_3)_2 + \text{H}_2\text{O}
\]

Diese Reaktion ermöglicht die C-C-Bindungsknüpfung zwischen Stannanen (Organozinnverbindungen) und Halogeniden oder Pseudo-halogeniden (X = -Cl, -Br, -I, -OTf, -OCOCH_3). Die Stille-Kupplung ist hierbei versatiler als vergleichbare Kupplungen (Heck, Suzuki), doch drängt sich aufgrund der Toxizität der verwendeten Organyle eine Alternative auf.

Mechanismus

Wahl der Substituenten R' (RSnR'_3) gilt es, mehrere Faktoren zu beachten: in der Reaktion entstehendes Trimethylzinnchlorid ist noch wasserlöslich und kann einfach entfernt werden - es ist aber toxischer als z.B. Tributylzinnchlorid.

Ausserdem soll sichergestellt werden, dass während der Katalyse die erwünschte Gruppe übertragen wird. Hierbei gilt:

HC=CH > RCH=CH > Aryl > RCH=CH_2 > Benzy1 > H_3COCH_2 > C_{a}H_{2}\text{n+1}

Vollhardt-Reaktion

\[
\text{OC} \xrightarrow{\text{Co}(\text{CO})_2} \text{OC}
\]

Stille-Kupplung

Diese Reaktion ermöglicht die C-C-Bindungsknüpfung zwischen Stannanen (Organozinnverbindungen) und Halogeniden oder Pseudo-halogeniden (X = -Cl, -Br, -I, -OTf, -OCOCH_3). Die Stille-Kupplung ist hierbei versatiler als vergleichbare Kupplungen (Heck, Suzuki), doch drängt sich aufgrund der Toxizität der verwendeten Organyle eine Alternative auf.

Mechanismus

Wahl der Substituenten R' (RSnR'_3) gilt es, mehrere Faktoren zu beachten: in der Reaktion entstehendes Trimethylzinnchlorid ist noch wasserlöslich und kann einfach entfernt werden - es ist aber toxischer als z.B. Tributylzinnchlorid.

Ausserdem soll sichergestellt werden, dass während der Katalyse die erwünschte Gruppe übertragen wird. Hierbei gilt:

HC=CH > RCH=CH > Aryl > RCH=CH_2 > Benzy1 > H_3COCH_2 > C_{a}H_{2}\text{n+1}
In der Palladium-katalysierten Kupplung können folgende Edukte eingesetzt werden:

Elektrophil

\[
\begin{align*}
\text{O} & \quad \text{Organozinn-Reagenz} \\
\begin{array}{c}
\text{R} \\
\text{R'} \\
\text{C} \\
\text{Cl} \\
\text{Br}
\end{array} & \quad \begin{array}{c}
\text{H} \\
\text{Sn} \\
\text{R}_3
\end{array} \\
\begin{array}{c}
\text{R'} \\
\text{C} \\
\text{=} & \quad \begin{array}{c}
\text{R'} \\
\text{Sn} \\
\text{R}_3
\end{array} \\
\text{X} & \quad \begin{array}{c}
\text{R'} \\
\text{Sn} \\
\text{R}_3
\end{array}
\end{align*}
\]

\[\begin{align*}
\text{ArylCH}_2\text{X} & \quad \text{R'} & \quad \text{R'} & \quad \text{Sn} & \quad \text{R}_3 \\
\text{X} & \quad \text{Cl}, \text{Br} \\
\text{Aryl}\text{X} & \quad \text{Cl}, \text{Br} \\
\text{Aryl}\text{X} & \quad \text{Cl}, \text{Br}
\end{align*}\]

Es fällt auf, dass die vorgestellten Elektrophile keine β-ständigen Wasserstoff-Atome tragen. Der Grund hierfür ist in der Reaktionsgeschwindigkeit der Einzelschritte zu suchen. Der langsamste Schritt im Katalysezyklus ist die Transmetallierung, welche viel langsamer abläuft als eine β-Hydrid-Eliminierung aus dem Alkylpalladiumhalogenid-Komplex:

![Katalysezyklus](image)
Das Zinn-Organyl kann freier gewählt werden, denn sowohl die trans/cis-Isomerisierung als auch die reduktive Eliminierung laufen schneller ab als eine β-Hyrid-Eliminierung.

\[
RX + R'ZnX \xrightarrow{\text{Ni}(PPh_3)_4 \text{ oder } Cl_2Pd(PPh_3)_2 + 2(i-Bu)_2AlH} R-R \quad R = \text{Alkenyl, Aryl, Allyl, Benzyl, Propargyl} \\
R' = \text{Alkenyl, Aryl, Alkinyl, Allyl, Benzyl, Allyl}
\]

Mechanismus

Die zur Kupplung benötigten Zinkorganyle sind durch Umsatz von Lithiumorganycen mit Zinkchlorid erhältlich:

\[
\begin{align*}
\text{Li} & \xrightarrow{\text{ZnCl}_2} \text{LiCl} \\
& \xrightarrow{\text{RT, 1 h, THF}} \text{ZnCl}
\end{align*}
\]

In der Negishi-Kupplung eingesetzte Nickel(0)-Katalysatoren wurden z.B. durch Reduktion von Ni(acac)$_2$ mit DIBAH und Zugabe des Phosphinligandes generiert - analog dazu die Reduktion von Cl$_2$Pd(PPh$_3$)$_2$. Die Qualität heutiger, kommerziell erhältlicher Pd-Katalysatoren mit Oxidationsstufe Null reicht mittlerweile aus (z.B. Pd(PPh$_3$)$_4$).

Es ist auch möglich, dass der Katalysator in situ durch das Organyl reduziert wird - ein Grund für die Durchführung der Reaktion unter Schutzgasatmosphäre, denn es entsteht homogekuppeltes Nebenprodukt.

Nickel-Katalysatoren sind oxidationsempfindlicher als Palladium-Katalysatoren, was sich in einer Verminderung der Ausbeute von etwa 5-10% bemerkbar macht. Sauber durchgeführte, Palladium-katalysierte Negishi-Reaktionen liefern homogekoppelte Biphenyle nur in Spuren (unter 2%).

Die eigentliche, katalysierte Reaktion erfolgt nach folgendem Mechanismus:

In der oxidativen Addition des Halogenides erhöht sich die Oxidationsstufe des Katalysators von 0 auf +II, es entsteht eine Organopalladium-Spezies. Der Austausch von Zink durch Palladium - die Transmetallierung - besitzt als Triebkraft die Bildung von Zinkhalogenid als Salz mit ionisember Charakter und einer Pd-C-Bindung mit kovalentem Charakter als bei den Edukten. Durch trans/cis-Isomerisierung kommen die organischen Reste in die richtige Position, um während

\[
\begin{align*}
\text{PdL}_n & \xrightarrow{\text{Oxidative Addition}} \text{R}-\text{Pd}-X \\
& \xrightarrow{\text{Reductive Eliminierung}} \text{R}^'-\text{Pd}-X \\
& \xrightarrow{\text{trans/cis Isomerisierung}} \text{R}^'-\text{Pd} + \text{ZnX}_2
\end{align*}
\]
der reduktiven Eliminierung gekoppelt zu werden. Bei diesem Schritt wird auch die Palladium (0) - Spezies zurückgebildet.

\[
\text{CyclooctylB(OH)₂ + Er-} \quad \text{R} \quad \text{Pd(PPH₃)₄}_\text{Benzol} \quad 2 \text{ eq. K₂CO₃ aq.} \quad 3 \text{ mol-% Pd(PPH₃)₄}_\text{Benzol}
\]

Mechanismus

Der Katalysezyklus für die Kreuzkupplung von Organometallen mit Halogeniden an Übergangsmetallen (typisch: Nickel(0) oder Palladium(0)) ist akzeptiert, da Zwischenprodukte isoliert und spektroskopisch analysiert wurden.

Beide Zyklen müssen also an unterschiedlichen Stellen mit Fragezeichen versehen werden.

OC - Namensreaktionen - Seite 120 - © by Thomi Albrecht
Die Heck-Reaktion ermöglicht die C-C-Bindungsknüpfung zwischen Olefinen und Arylhalogeniden oder Vinylhalogeniden.

\[
\text{PhC} = \text{OAc} + \text{Pd(OAc)}_2 \rightarrow \text{PhC} = \text{OAc} + \text{Pd(OAc)}_2
\]

Mechanismus

Katalytisch wirksam scheint eine Pd⁰-Spezies zu sein, welche in situ gebildet wird. Je nach Hilfsstoffen kann das Palladium auf drei unterschiedliche Arten reduziert werden.

1. Durch Phosphine:

 \[
Pd(OAc)_2 + 2 PPPh_3 \rightarrow Pd^{II} + 2 PPh_3 + OAc^{-} + \text{HBr}
\]

2. Durch Amine:

 \[
Pd(OAc)_2 + \text{R}^\prime \text{R}^\prime' \rightarrow Pd^{II} + \text{AcOH} + \text{HBr}
\]

3. Durch Olefine:

 \[
 \text{R}^\prime \text{R}^\prime' + Pd(OAc)_2 \rightarrow Pd^{II} + \text{AcOH} + \text{CH}_3\text{COOH}
 \]

Wenn wie im oberen Beispiel ein -M-Substituent konjugiert zur Doppelbindung vorhanden ist, gilt, dass endständige Olefine praktisch nur trans-substituierte Endprodukte ergeben.
Die Pauson-Khand-Reaktion ist eine [2+2+1]-Cycloaddition eines Alkins, eines Alkens und von Kohlenstoffmonoxid.

\[
R\equiv H + R' = \underset{\text{ad.}}{\text{Co}_2(\text{CO})_8} \text{CO + Kat.} \rightarrow R - R' \quad + \quad R' - R
\]

Mechanismus

\[
\begin{align*}
\text{Co}_2(\text{CO})_8 & \quad \equiv \quad \text{R} \\
\text{R} & \quad \equiv \quad \text{R'}
\end{align*}
\]

Folgende Insertion eines CO-Liganden führt zur Bildung des Carbonyls. Reduktive Eliminierung findet im Anschluss statt:

\[
\begin{align*}
\text{R} & \quad \equiv \quad \text{R'} \\
\text{R'} & \quad \equiv \quad \text{R}
\end{align*}
\]

Abspaltung der Co$_2$(CO)$_6$-Einheit setzt das Produkt frei:

\[
\begin{align*}
\text{R} & \quad \equiv \quad \text{R'}
\end{align*}
\]

\[
\begin{align*}
\text{Acetylen / CO (1:1)} & \quad 2.3 \text{ mol-\% [Co}_2(\text{CO})_8] \\
& \quad 60-70^\circ \text{C} \rightarrow \text{62%}
\end{align*}
\]

Mechanismus

Die Reduktion des eingesetzten Katalysators zur katalytisch aktiven Pd(0)-Spezies erfolgt mit Phosphin, mit dem Amin (siehe Heck-Reaktion) oder durch Reaktion mit dem Kupferorganyl, woraus homogekoppeltes Nebenprodukt resultiert:
\[(\text{Ph}_3\text{P})_2\text{PdCl}_2 \xrightarrow{\text{Cul (kat), 2 Et}_2\text{NH} - 2 (\text{Et}_2\text{NHHCl})} 2 \xrightarrow{\text{reduktive Eliminierung}} (\text{Ph}_3\text{P})_2\text{Pd} + R' - \equiv - R' \]
Eschweiler-Clarke-Reaktion

Die Eschweiler-Clarke-Reaktion ermöglicht die Synthese von tertiären Methylaminen.

\[R_2N-H + CH_2=O \xrightarrow{HCOOH, - CO_2} R_2N-CH_3 + H_2O \]

Mechanismus

Im ersten Schritt reagieren das sekundäre Amin und Formaldehyd unter Wasserabspaltung bis zum Iminiumion:

Formiat reduziert durch Übertragung eines Hydrid-Ions das Iminiumion zum Amin:

Arbuzov-Reaktion

Die Arbuzov-Reaktion dient zur Darstellung von Phosphonsäureester, welche nach Deprotonierung als stabile Ylide in die Wittig-Horner-Reaktion eingesetzt werden können.

Phosphite und Halogenide (auch Alkylhalogenide) können variert werden. Sekundäre Halogenide neigen aber zur Eliminierung. Iodide sind am reaktivsten.

Fischer-Veresterung

Bei der Fischer-Veresterung handelt es sich, wie der Name schon sagt, um eine Esterbildung, wobei gilt:

\[\text{Carbonsäure} + \text{Alkohol} \rightarrow \text{Ester} + \text{H}_2\text{O} \]
- mit Temperatur
- mit Säure als Katalysator
Losse-Umlagerung

Abbau von Hydroxamsäuren zum primären Amin.

\[
\begin{align*}
R-CO-NOH & \xrightarrow{1) NH_2OH} R-CO-NH_{Ac} \xrightarrow{2) Ac_2O} R-CO-N_{Ac} \\
& \xrightarrow{OH^-} R-N=OAc \\
& \xrightarrow{200^\circ C} R-N=C=O
\end{align*}
\]

\[
R-NH_2 \quad H^+ \quad R-N=C=O
\]

Hoffmann-Umlagerung

Decarboxylierender Abbau von Carbonsäureaminen zum Amin mit NaOH und Br₂ (:=NaOBr).

\[
\begin{align*}
R-CO-NH_2 & \xrightarrow{NaOH + Br_2} R-CNBr & \xrightarrow{Br^-} R-N=C=O \\
& \xrightarrow{OH^-} R-NH_2 + CO_2
\end{align*}
\]

Schmidt-Umlagerung

Umsetzung von Carbonsäuren mit HN₃ und H₂SO₄. Es bildet sich ein primäres Amin.

\[
\begin{align*}
R-CO-OH & \xrightarrow{HN_3 + H_2SO_4} R-CN_{N-N} \quad \text{(imichten, nichtstabil)} \\
& \xrightarrow{R-NH_2 + CO_2}
\end{align*}
\]

Tsuji-Trost-Reaktion (Trost-Allylierung)
\[\text{NuH = malonae, beta-diketone, beta keto ester, enamine,} \]
\[\text{beta keto sulfone, bis sulfone} \]

\[[\text{Pd}] \text{ complexes: Pd(PPh}_3)_4, \text{ Pd}_2(\text{db})_3 \text{CHCl}_3+\text{PPh}_3, \text{ Pd(OOC\text{CH}_3)_2+PPh}_3 \]

\text{base = sodium hydride}
Die Robinson-Anellierung ist eine sehr nützliche Reaktionsabfolge zum Aufbau von komplexen, polycyclischen Verbindungen, vornehmlich Steroid-Derivaten.

Mechanismus
Unter Basenkatalyse und thermodynamischer Kontrolle bildet sich ein Gleichgewicht zwischen thermodynamisch günstigem Enol und dem Keton. Die Enol-Form reagiert mit einem Vinylekton-Derivat in einer Michael-Addition ab:

Das neu gebildete Enol muss tautomerisieren, nur die rechte Form kann in der Aldoladdition einen Sechsring ausbilden:

Die Aldol-Addition wird von einer Kondensation gefolgt. Unter Wasserabspaltung bildet sich eine konjugierte Doppelbindung:
APPEL-REAKTION

Darstellung von Chloriden und Bromiden durch Umsatz von Alkoholen mit einer stöchiometrischen Menge CCl₄ oder CBr₄ in Gegenwart von Triphenylphosphin:

\[
\begin{align*}
DH & \underset{CH_4, PF_3}{\rightarrow} X \quad X = \text{Br, Cl} \\
R' & \quad R'
\end{align*}
\]

Mechanismus

Triebkraft der Appel-Reaktion ist die Bildung von Triphenylphosphinoxid. Nach Aktivierung des Triphenylphosphines erfolgt die Reaktion mit dem zwischenzeitlich gebildeten Alkoholat:

Triphenylphosphinoxid ist eine sehr gute Abgangsgruppe. Der nucleophile Angriff des Bromid oder Chlorid-Ions führt zum Produkt:

\[
\begin{align*}
\text{Ph}_3\text{P} & \quad + \quad \text{Br} \quad \rightarrow \quad \text{Ph} \quad \text{P} \quad + \quad \text{ICBr}_3 \\
\text{Ph} & \quad \text{Ph} \quad \text{Cl} \quad \text{Ph} \quad + \quad \text{HBr} \\
\text{Br} & \quad \text{Ph} \quad \text{Ph} \quad \text{Ph} \\
\end{align*}
\]

LEUCKART-WALLACH-REAKTION

Reduktive Aminierung von Ketonen.

\[
\begin{align*}
\text{Ph} & \quad \text{H}_2\text{C} \quad \overset{\Delta}{\rightarrow} \quad \underset{200^\circ C}{\text{Ph}} \quad \text{H}_2\text{C} \quad \text{NH}_2 \\
\text{Ph} & \quad \text{H}_2\text{C} \quad \text{N} \quad \text{H} \quad \text{H}_2\text{C} \\
\text{H}_2\text{C} & \quad \text{O} \quad \text{Ph} \quad \text{HO} \\
\end{align*}
\]

\[
\begin{align*}
R \quad & \quad \quad \quad R' \\
\quad & \quad \quad
\end{align*}
\]

Mechanismus

Persäuren sind so stark polarisiert, dass ein Sauerstoff-Atom mit einer positiven Partialladung zur Verfügung steht, das in einer electrophilen Addition mit einem Alken abreagieren kann:

![Mechanismusdiagramm](image)

Die Situation beim symmetrischen Wasserstoff-Peroxid setzt für diese Umsetzungen einen Katalysator voraus, der die nötige Polarisation bewirkt. Im Sinne von atomökonomischen Umsetzungen ist dies aber wünschenswert, und entsprechende Protokolle existieren bereits. Die Prileschajew-Reaktion verläuft schliesslich über einen Übergangszustand, der einem Schmetterling ("butterfly transition state") nicht unähnlich ist:

![Prileschajew-Reaktion](image)

Hierbei werden die Bindungen zum electrophilen Sauerstoff-Atom geknüpft und es findet die Übertragung des Wasserstoff-Atoms statt.