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Carbon losses from terrestrial ecosystems determine the direc-
tion and magnitude of carbon–climate feedbacks1,2. The tra-
jectory of future climate change therefore depends on the 

biological processes that underpin ecosystem fluxes. Ecosystem res-
piration (Re), the cumulative respiration of autotrophs (plants) and 
heterotrophs (bacteria, fungi and animals), represents a major com-
ponent of the global carbon cycle3. Temperature strongly influences 
Re through the laws of thermodynamics4–6 but the global extent of 
the temperature–Re relationship has not been fully explored7,8.

Temperature-mediated variations in Re are typically described 
as an exponential function in Earth system models (ESMs)2. That 
is, globally static Q10 values of around 2 represent a doubling of 
ecosystem CO2 fluxes with an increase in temperature of 10 °C, 
when all other terms are equal9. Empirical and theoretical studies,  

however, have documented conflicting temperature–Re relation-
ships. Latitudinal shifts in the temperature sensitivity of Re have 
been observed in empirical studies, with ecosystems experienc-
ing greater increases in Re with temperatures at high, compared to 
mid and low, latitudes8,10,11. At the same time, global syntheses have  
proposed convergent temperature sensitivities of Re across different 
climates and ecosystem types4,12,13.

The influence of temperature on ecosystem respiration is medi-
ated by the temperature sensitivity of individual physiology, com-
munity composition and biotic interactions of all the organisms 
inhabiting an ecosystem13,14. At the individual level, metabolic rates 
scale with body mass and increase exponentially with temperature 
according to the Boltzmann factor, e−E/kT, where E is the activation 
energy (eV), k is the Boltzmann’s constant (8.62 × 10−5 eV K−1) and  
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Ecosystem respiration is a major component of the global terrestrial carbon cycle and is strongly influenced by temperature. 
The global extent of the temperature–ecosystem respiration relationship, however, has not been fully explored. Here, we test 
linear and threshold models of ecosystem respiration across 210 globally distributed eddy covariance sites over an extensive 
temperature range. We find thresholds to the global temperature–ecosystem respiration relationship at high and low air tem-
peratures and mid soil temperatures, which represent transitions in the temperature dependence and sensitivity of ecosystem 
respiration. Annual ecosystem respiration rates show a markedly reduced temperature dependence and sensitivity compared 
to half-hourly rates, and a single mid-temperature threshold for both air and soil temperature. Our study indicates a distinc-
tion in the influence of environmental factors, including temperature, on ecosystem respiration between latitudinal and climate 
gradients at short (half-hourly) and long (annual) timescales. Such climatological differences in the temperature sensitivity of 
ecosystem respiration have important consequences for the terrestrial net carbon sink under ongoing climate change.
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T is temperature (in Kelvin)6. Widescale application of the 
Boltzmann factor to individual metabolic rates has revealed a com-
mon value of E between 0.6 and 0.7 eV (refs. 5,6,15). At the ecosys-
tem level, models based on metabolic theory indicate exponential 
temperature–Re relationships across diverse ecosystems with a value 
of E surprisingly similar to individual metabolic rates (0.65 eV; 
Q10 ≈ 2.50; refs. 4,13). Yet, models of the temperature–Re relation-
ship have focused on a limited temperature range between 0 and 
30 °C, even though terrestrial ecosystems experience temperatures 
between −60 and 50 °C (ref. 16).

In this study we test the generality of the temperature–Re rela-
tionship, described by a general ecosystem model, across an exten-
sive temperature range. The model, founded in metabolic theory, 
gives the linear expression:

ln Reð Þ ¼ �E
1;000k

1;000
T

� �
þ ln b0ð ÞðCÞ½  ð1Þ

where ln(Re) is the natural logarithm of ecosystem respiration, 
in W ha−1; (1,000/T) is the reciprocal of absolute temperature; b0 
is the intensity of cellular metabolism; and C is the size distribu-
tion of organisms (assumed to be independent of Re according to 
the energy equivalence rule)4. The model predicts a general linear 
relationship between (1,000/T) and ln(Re), with an expected slope  
(�E from hereon in) across diverse ecosystems equal to −7.50 K 
(0.65 eV, with a plausible range between −2 and −11 K or 0.2 and 
1.2 eV)10. However, we would expect climatological differences in 
resource supply17,18 and community composition14,19 to alter �E across 
the global temperature range. We would also expect divergent rela-
tionships between metabolism and resource supply with tempera-
ture to modify the temperature–Re relationship over time13,20.

Results
We test the global extent of the linear temperature–Re relationship 
predicted by metabolic theory, by applying the model presented 
in equation (1) to measurements across 210 globally distrib-
uted FLUXNET sites21 (Fig. 1 and Supplementary Data 1). Both 
short-term (half-hourly) and long-term (annual) measurements 

were tested for air and soil temperatures. The half-hourly FLUXNET 
dataset is presented with more conventional temperature and Re 
units in Extended Data Fig. 1. The linear model (equation (1)) was 
compared to a threshold model, which accounts for variations in 
the activation energy (�E) in equation (1) above and below specified 
temperature breakpoints (Methods). That is, the threshold model 
accounts for shifts in the temperature sensitivity of Re across the 
global temperature range and explains latitudinal shifts in the 
temperature–Re relationship observed in empirical studies8,10,11. All 
models were linear mixed effects models and goodness of fit com-
parisons used Akaike Information Criterion (AIC) measurements.

The threshold model, which integrated two temperature break-
points of −24.8 ± 0.15 and 15.1 ± 0.22 °C, better explained Re rates 
over the global extent of air temperatures in the FLUXNET dataset 
than the linear model (ΔAIC = 3,839,265, Fig. 2). Similar to previ-
ous findings4,13, the threshold model indicates a temperature sensi-
tivity of Re indistinguishable from that of −7.50 K (0.65 eV, dashed 
line in Fig. 2a,b) predicted by metabolic theory (likelihood ratio 
test: χ2 = 0, P = 1) between temperature breakpoints (�E = −7.42 K, 
0.64 eV, Q10 ≈ 2.45 between 15.1 and −24.8 °C, solid line in Fig. 2b). 
Evaluation of the linear model, on the other hand, gives an acti-
vation energy for global Re rates of −7.30 K (0.63 eV, solid lines in 
Fig. 2a), significantly different from that predicted by metabolic 
theory (likelihood ratio test: χ2 = 20,009, P < 0.0001). Importantly, 
the threshold model indicates a lower temperature sensitivity of Re 
at higher temperatures (�E = −2.84 K, 0.25 eV, Q10 ≈ 1.41 >15.1 °C) 
and extreme temperature sensitivity of Re at very low tempera-
tures (�E = −30.53 K, 2.64 eV, Q10 ≈ 40.79 <−24.8 °C). The threshold 
model therefore primarily improves predictions, compared to the 
linear model, of the temperature–Re relationship at low and high 
latitude sites (Fig. 2f,g). High measured variability in Re across the 
global temperature range, however, probably reflects the interactive 
effects of disturbance events, plant phenology and soil water and 
nutrient limitation on ecosystem metabolism.

Given the importance of belowground communities in Re  
(refs. 14,19), linear and threshold models were tested for the global 
relationship between soil temperature and ecosystem respiration 
(Fig. 2 and Supplementary Table 2). A single temperature threshold 
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Fig. 1 | Global distribution of the FLuXNET sites. Site locations (n = 210) are displayed over a world mean annual temperature (MAT) map40. Symbol 
diameter represents the number of site years (range 1–22 yr) and the inset left-hand figure shows the distribution of site years (n = 1,454) by MAT. Map 
reproduced with permission from ref. 40, The Nelson Institute Center for Sustainability and the Global Environment, University of Wisconsin-Madison;  
data source, Climate Research Unit, University of East Anglia.
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of 11.4 ± 0.29 °C emerged for soil temperature, with little evidence 
for a lower temperature breakpoint (likelihood ratio test: χ2 = 0, 
P = 1). Above the temperature threshold, the activation energy of 
Re was lower than that observed for air temperature (�E = −2.18 K, 

0.19 eV, Q10 ≈ 1.30), while below the temperature threshold the 
activation energy was steeper than that between air temperature 
thresholds (�E = −13.37 K, 1.16 eV, Q10 ≈ 5.05). The absence of a 
lower threshold for Re with soil temperature is probably explained 

ΔAIC = 3,839,265n = 23,552,117
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Fig. 2 | Global extent of the temperature–ecosystem respiration (Re) relationship. a,b,d–g, Night-time half-hourly ecosystem respiration measurements 
from the FLUXNET dataset (symbols), broadly classified as tropical (magenta), Mediterranean (orange), temperate (yellow), boreal (purple) or tundra 
(green) climates. Plots a,d and f present predictions from the linear model (equation (1)) and plots b,e and g present predictions from a threshold model 
with two temperature breakpoints (equation (2)), of the temperature–ecosystem respiration relationship. c, Plot shows the presence of two temperature 
breakpoints (black line: air (1,000/T) = 4.027, −24.8 °C; grey line: air (1,000/T) = 3.469, 15.1 °C), identified by the threshold models performance (ΔAICs 
compared to the linear model where higher values provide a better fit to the FLUXNET dataset). Goodness of fit measures indicate the pseudo r2 for 
marginal (fixed) effects (r2m

I
) and conditional (fixed and random) effects (r2c

I
), with a and b showing predictions of the fixed effects only (temperature, 

solid lines) in each model compared to the activation energy of −7.50 K predicted by metabolic theory (dashed lines, r2m
I

 = 0.361; r2c
I
 = 0.542). Plots d and e 

present model predictions against observed FLUXNET measurements (solid black 1:1 lines would demonstrate perfect prediction) and plots f and g show 
model residuals against latitude. Full details of the linear mixed effects models are presented in Supplementary Table 1.
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by thermal insulation from snow cover at low temperatures22 result-
ing in much fewer observations, compared to air temperature, of the 
soil temperature–Re relationship below 0 °C.

To account for the relative uncertainties of eddy covariance mea-
surements below −20 °C (ref. 23), alongside the emergence of a single 
temperature breakpoint for soil temperature, we tested the sensitiv-
ity of the air temperature threshold model to temperature ranges 
with few available measurements (Extended Data Fig. 2). Ecosystem 
respiration data were classified in 5 °C temperature intervals and 
intervals containing <1% of all measurements (n < 235,521) were 
defined as low frequency intervals. Such intervals were present at 
both high (>36 °C) and low (<−19 °C) temperatures. Each low fre-
quency temperature interval was removed one by one, as well as 
all together (~1.8% of the dataset), to investigate the sensitivity of 
the threshold model. The test provides supporting evidence of the 
robustness of temperature breakpoints to the removal of each tem-
perature interval one by one. However, there was no support for a 
lower temperature breakpoint (−24.8 °C in Fig. 2b,c) when all low 
frequency intervals or all those <−19 °C were removed. Instead, a 
single temperature breakpoint of 14.6 °C emerged (Extended Data 
Fig. 3 and Supplementary Table 3). The lower air temperature 
breakpoint should therefore be considered with caution until more 
accurate Re measurements at low temperatures can be made. Re rates 
nevertheless display a sharp decline at lower temperatures for both 
air (Fig. 2b) and soil (Fig. 3b) temperatures.

Sharp declines in Re at low soil and air temperatures probably 
indicate pulse responses of soil respiration to rewetting and thaw-
ing events24, attributed to the suppression of microbial activity 
under water limitation in freezing conditions25 and an uncoupling 
of the temperature dependence of microbial respiration from ther-
modynamic laws26. Differences between global temperature–Re 
relationships for air and soil temperature at short timescales also 
suggest shifts in the contribution of aboveground and belowground 
communities to Re across the global extent of temperatures. For 
instance, a lower activation energy for the temperature–Re relation-
ship at higher soil temperatures (�E = −2.18 K > 11.4 ± 0.29 °C, Fig. 
3), compared to air temperatures (�E = −2.84 K > 15.1 °C, Fig. 2), 
could indicate a relative reduction in the contribution of below-

ground autotrophs and heterotrophs to Re in warmer climates. On 
the other hand, the lower threshold for the temperature–Re relation-
ship at low air temperatures could reflect a temperature limit for the 
metabolism of aboveground communities, whereas the absence of a  
lower temperature threshold for soil temperature suggests the 
importance of belowground communities as components of Re in 
mild to cold climates.

Global air temperature thresholds were consistent across  
climates but the goodness of fit of the threshold model (pseudo r2 
and ΔAICs compared to the linear model, Fig. 4) declined with 
a decrease in overall temperature range at lower latitudes. For 
instance, the temperature dependence of Re (variation in Re rates 
explained by temperature) was greater in cold, higher latitude and 
climates (tundra and boreal, r2m>0:60

I
), compared to mild (temper-

ate, r2m ¼ 0:48
I

) and warm, low latitude and climates (Mediterranean 
and tropical, r2m≤0:09

I
). In warmer climates, random effects had a 

much greater influence on Re than in mild or cold climates, with 
FLUXNET site and latitude explaining more variation in tropi-
cal and Mediterranean ecosystems (Supplementary Table 4).  
Across the 210 sites, the threshold model better predicted the tem-
perature–Re relationship in most cases (n = 197, Supplementary 
Data 1), while temperature explained more of the variation in Re 
rates at sites with greater temperature ranges and higher latitudes 
(Extended Data Fig. 4).

Q10 estimates from the threshold model reflect latitudinal shifts 
in the temperature sensitivity of ecosystem respiration, with tropi-
cal, Mediterranean, temperate, boreal and tundra climates yielding 
Q10 values of 1.38 ± 0.01, 1.82 ± 0.43, 2.32 ± 0.31, 2.67 ± 0.10 and 
2.90 ± 0.12, respectively, compared to a global Q10 of 2.26 ± 0.35 
and higher Q10 estimates based on the soil temperature threshold 
model (Supplementary Table 5). Empirical observations of Re, soil 
respiration and carbon turnover rates are comparable with thresh-
old model estimates of higher temperature sensitivities of Re at 
high latitudes and lower temperature sensitivities of Re at low lati-
tudes10,27. Weaker temperature control in the linear model, similar to 
ESMs that implement static global Q10 values, cannot capture shifts 
in Re temperature sensitivities across the global temperature range 
(Supplementary Table 5).

ΔAIC = 2,710,204n = 20,997,521
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Fig. 3 | The global soil temperature–ecosystem respiration relationship. Night-time half-hourly ecosystem respiration measurements from the FLUXNET 
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are compared for the linear model (a) and the threshold model (b), for the fixed effects of temperature (solid lines). Both models are compared to the 
activation energy of −7.50 K predicted by metabolic theory (dashed lines, r2m

I
 = 0.173, r2c

I
 = 0.500). c, The plot shows the presence of a single temperature 

breakpoint (black line: soil (1,000/T) = 3.515, 11.4 °C), identified by the threshold models performance (ΔAICs compared to the linear model where higher 
values provide a better fit to the FLUXNET dataset). Full details of the linear mixed effects models are presented in Supplementary Table 2.
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Annual temperature–Re relationships were analysed across 
site years to investigate whether climatological differences in the 
temperature dependence and sensitivity of Re emerge over lon-
ger timescales. The threshold model explained the temperature–
Re relationship better than the linear model at longer timescales 
for both air and soil temperatures (Fig. 5). Surprisingly, thresh-
old models converged for air and soil temperatures, with a single 
mid-temperature breakpoint of 11.0 ± 0.16 °C (Fig. 5b,d). Above 
the temperature threshold, annual Re rates declined with increas-
ing mean annual temperatures from mid to low latitudes, while the 
activation energy below the temperature threshold was markedly 
reduced (Fig. 5a,c, �E ~−4.90 K, 0.42 eV) compared to short times-
cales. Weaker temperature relationships at longer timescales are 
reflected by global Q10 estimates of 1.34 ± 0.55 and 1.29 ± 0.58 for 
air and soil temperatures, respectively (Supplementary Table 6). An 
overall lack of Re variation explained by temperature (r2m<0:14

I
) 

probably reflects the importance of confounding effects from soil 
water, nutrient limitation and resource availability, alongside ther-
mal acclimation, at longer timescales. The threshold model was 
further consistent for annual soil respiration and air temperature 
measurements from the Global Soil Respiration Database28, with a 
single temperature breakpoint of 5.5 °C (Extended Data Fig. 5 and 
Supplementary Table 6).

Discussion
Our study shows how latitudinal shifts in Re temperature sensitivity 
at both short and long timescales correspond to transitions in the 
global temperature–Re relationship across temperature thresholds. 
Importantly, temperature thresholds also indicate differences in 
the temperature dependence of Re, with more variation in Re rates 
explained by temperature in cold compared to warm climates. In 
cold climates, temperature strongly influences metabolic activity of 
belowground microbial communities19,25,26. In warm climates, eco-
system metabolism is limited by water and nutrient availability and 
resource availability to biological communities18,27,29–31.

Both the temperature sensitivity and dependence of annual Re 
rates are markedly reduced compared to the short-term Re tem-
perature response, suggesting the dominance of resource effects on 
ecosystem metabolism at longer timescales13. For instance, primary 
production directs carbon availability for ecosystem metabolism 
and typically shows a weaker temperature dependence20,32. Nutrient 
availability further drives preferential allocation of photosynthate C 
aboveground or belowground, with consequences for carbon avail-
ability and quality to different ecosystem components17.

Thresholds to the temperature–Re relationship shown here  
will undoubtedly result from temporally divergent sensitivities 
between ecosystem components (for example, belowground and 
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aboveground, heterotrophic and autotrophic) and several envi-
ronmental controls over time. Variable acclimation of the differ-
ent components of Re to these environmental controls may further 
influence the temperature dependence and sensitivity of Re by 
modifying the temperature response of catabolic and anabolic path-
ways33–35. Although we would expect such mechanisms to occur as 
gradual state changes rather than the sharp breakpoints described 
here, our study indicates consistent temperature thresholds at which 
ecosystem metabolism changes at a global scale. However, such 
results need to be validated for different ecosystem components as 
detailed measurements become available and for decadal timescales 
over which the influence of anthropogenic factors can be detected.

Biosphere feedbacks with future climate changes will be strongly 
influenced by the temperature–Re relationship36,37 and latitudi-
nal shifts in Re temperature sensitivity as identified here will have 
important consequences for the global net land carbon sink38. For 
instance, while huge stores of labile carbon in permafrost regions 
could be released if temperatures rise above lower thresholds for 
microbial decomposition26, CO2 fertilisation in tropical and boreal 
regions could enhance carbon gains through primary production 
relative to losses through Re (refs. 30,39). Climate change forecasts 

by ESMs would thus be improved by accounting for temperature 
thresholds of Re at a global scale. A higher resolution understanding 
of Re–climate feedbacks, however, requires strategic disentangling 
of the multiple environmental controls on the aboveground, below-
ground, heterotrophic and autotrophic components of terrestrial 
ecosystem carbon fluxes.

Methods
The FLUXNET dataset. FLUXNET is a global network of micrometeorological 
sites providing eddy covariance CO2 exchange observations between terrestrial 
ecosystems and the atmosphere21. The FLUXNET 2015 dataset used in this study 
provides half-hourly temperature and night-time Re measurements over 1,454 site 
years and a latitudinal range of 78.92° N to 37.43° S. Observations across the 210 
sites, which range from arctic tundra to tropical rainforest ecosystems, provide 
an extensive temperature range of 89.7 °C, from −43.4 to 46.3 °C (Fig. 1 and 
Supplementary Data 1).

The FLUXNET dataset is subject to a data processing pipeline which include 
data quality controls checks, filtering of low turbulence periods and partitioning 
of CO2 fluxes into respiration and photosynthesis components using established 
methods21. Disentangling respiration and photosynthesis fluxes during the day 
is complex and the extraction of Re relies on modelling techniques with high 
uncertainty. Night-time CO2 exchange measurements thus provide the best 
approximation of Re and uncertainty has been minimised for the FLUXNET 
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Fig. 5 | Long-term temperature thresholds of ecosystem respiration (Re).  a,c, Mean annual Re and either air (a) or soil (c) temperature measurements 
(symbols), with symbol colours representing climate as in Fig. 2. Plots show predictions from the threshold model (solid lines, for the fixed effects of 
temperature only), with dashed lines indicating an activation energy of –7.50 K as predicted by metabolic theory. b,d, Both threshold models identified 
a single temperature breakpoint of 11.0 °C (dashed lines), with little support for a second temperature breakpoint (ΔAIC < 5 and P > 0.05). ΔAICs are 
between the linear and threshold models. Full details of the threshold mixed effects models are presented in Supplementary Table 6.
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dataset by using quality control procedures21. Here, non-gap-filled half-hourly 
(µmol CO2 m−2 s−1) and annual (g C m−2) night-time Re (RECO_NT_VUT_MEAN), 
air temperature (TA_F) and soil temperature (TS_F) measurements were 
compiled from the FLUXNET 2015 dataset (https://fluxnet.fluxdata.org/data/
fluxnet2015-dataset/). Re measurements were then converted to units of metabolic 
energy (W ha−1) (ref. 4) by taking 0.272 J µmol CO2 and 10,000 m2 ha−1.

Model analysis. The linear model (equation (1)) for describing the temperature–Re 
relationship was fitted to the global FLUXNET dataset, for both air and soil 
temperature. To test for the presence of temperature thresholds to the linear 
temperature–Re model at a global scale, which explain shifts in Re temperature 
sensitivity across climates, we compare the linear model in equation (1) to 
a threshold (piecewise) model. The threshold model, with two temperature 
breakpoints, gives:

lnðReÞ ¼ �E1f1ð1;000=T ; k1Þ þ �E2f2ð1;000=T; k1; k2Þk2Þ þ �E3f3ð1;000=T; k2Þ
þ ln b0ð ÞðCÞ½ 

ð2Þ

where �E1
I

, �E2
I

 and �E3
I

 represent activation energies for different temperature 
(1,000/T) ranges, determined by the two temperature breakpoints (k1 and k2) and f 
represents the functions:

f1 ¼
1;000=T; 1;000=T≤k1
k1; k1>1;000=T

�

f2 ¼
0; 1;000=T≤k1
1; 000=T � k1; k1≤1; 000=T≤k2
k2 � k1; 1; 000=T>k2

8
<
:

f3 ¼
0; 1;000=T≤k2
1;000=T; 1;000=T>k2

�

The threshold model first introduced a single temperature breakpoint to the 
linear model, so that the activation energy (�E, with more negative values indicating 
higher temperature sensitivity) varies above and below a specified temperature. 
Temperature breakpoints were tested for the temperature (1,000/T) range between 
3.1 and 4.4, for every increment of 0.001 (~0.07 °C). Differences in linear and 
threshold model AICs were then compared for every temperature breakpoint. 
The highest ΔAIC was taken as providing the most support for a temperature 
breakpoint, as long as ΔAIC > 5 for additional degrees of freedom and P < 0.05 in a 
likelihood ratio test. Then, the threshold model integrated an additional temperature 
breakpoint, taking the first temperature breakpoint with the greatest support as a 
fixed value. Model AICs for each second temperature breakpoint were compared to 
the single threshold model and the second threshold was selected on the basis of the 
highest ΔAIC given the conditions outlined above. Temperature breakpoints were 
identified for short (half-hourly) and long (annual) temperature–Re relationships.

All models were linear mixed effects models, with FLUXNET site and latitude 
set as random effects. First, the models were tested for the global dataset and then 
for broadly classified climate zones (cold, mild and warm) and climates (tundra, 
boreal, temperate, Mediterranean and tropical). Some generalisations were 
necessary during climate classification. For instance, alpine sites at mid-latitudes 
were classified as boreal climates (Supplementary Data 1). Linear and threshold 
models were further tested for each FLUXNET site. Finally, annual Re rates were 
used to investigate changes in temperature breakpoints and linear and threshold 
model performance, at long timescales for air and soil temperature. Long timescale 
models accounted for latitude and year as random effects.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data analysed during the current study are available on the FLUXNET website 
(https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/) and are subject to data 
policy restrictions (https://fluxnet.org/data/data-policy). Summaries for each 
FLUXNET site are provided in Supplementary Data 1.

Code availability
The R code used for analysis during the current study is available on Zenodo 
(https://doi.org/10.5281/zenodo.4506798).
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Extended Data Fig. 1 | Short-term temperature and ecosystem respiration measurements in conventional units. Night-time half-hourly ecosystem 
respiration measurements from the FLUXNET dataset (symbols, colours representing climate as in Fig. 2) for a) air and b) soil temperature. Plots show 
ecosystem respiration rates in mg C m−2 hr−1 and temperature in degrees Celsius units.
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Extended Data Fig. 2 | Identification of low frequency air temperature intervals. Boxplot of the half-hourly ecosystem respiration measurements from the 
FLUXNET dataset (symbols, colours representing climate as in Fig. 2) presented in 5 °C air temperature intervals. Boxplots show median values (centre 
lines) and upper and lower quantiles, with black symbols representing outliers. Asterisks at the top indicate extreme high and low 5 °C temperature 
intervals with few measurements (< 1 % of the dataset, n < 235,521). The temperature intervals with asterisks (low frequency intervals) were removed 
from the dataset one by one as well as all together and the threshold model tested. The temperature breakpoints were robust to the removal of each 
temperature interval one by one but there was no support for a cold temperature breakpoint (−24.8 °C in Fig. 2b,c) when all low frequency intervals or 
all those < −19 °C were removed. A single temperature breakpoint emerged from the threshold model when all low frequency intervals were removed 
(Extended Data Fig. 3 and Supplementary Table 3).
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Extended Data Fig. 3 | Threshold model for ecosystem respiration rates and air temperature when all low frequency temperature intervals were 
removed. Threshold model for half-hourly ecosystem respiration rates and air temperature when all low frequency temperature intervals shown in 
Extended Data Fig. 2 (identified by asterisks) were removed from the dataset. Threshold model predictions (solid line, for the fixed effects of temperature 
only in a) identified a single temperature threshold of 14.6 °C, with little support for a second temperature breakpoint (b, ΔAIC < 5 and p > 0.05).  
The dashed line in a indicate an activation energy of −7.50 K as predicted by metabolic theory and ΔAICs in b are between the linear and threshold model. 
Full details of the threshold mixed effects model are presented in Supplementary Table 3.
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Extended Data Fig. 4 | Correlation matrix between site variables and model goodness of fit. Correlation matrix between FLUXNET site variables 
(latitude, maximum, minimum, mean and air temperature range (°C)) and the goodness of fit (adjusted r2) of the best performing model for predicting the 
temperature dependence of ecosystem respiration at the site level (threshold, n = 197; linear, n = 13; Supplementary Data 1).
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Extended Data Fig. 5 | Long-term temperature threshold for soil respiration. Long-term temperature threshold for soil respiration (Rs), showing a) mean 
annual Rs from the global soil respiration database (symbols, colours representing climate as in Fig. 2) and the threshold model prediction (solid line, 
for the fixed effects of temperature only); and b) identification of a single temperature breakpoint of 5.5 °C, with little support for a second temperature 
breakpoint (ΔAIC < 5 and p > 0.05). Dashed lines indicate an activation energy of −7.50 K as predicted by metabolic theory and ΔAICs are between the 
linear and threshold model. Full details of the threshold mixed effects model are presented in Supplementary Table 6.
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