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A B S T R A C T

As the eddy-covariance technique enables intensive measurements of evapotranspiration (ET) at the ecosystem
level, the interest in further partitioning ET into two main process-based components transpiration (T) and
surface evaporation (E) □ is increasing. Although models for partitioning tower-measured ET have been de-
veloped, their reliability for different types of ecosystems still requires extensive validations. From 2001 to 2019,
we measured CO2 and H2O vapor fluxes over an oak-grass savanna landscape from three eddy-covariance towers
(i.e., one over an oak woodland; the other two over annual grasslands under tree canopy and in open area).
Annual ET (± standard deviation) from the oak woodland, understory grassland, and open grassland was
419± 85 mm, 167±36 mm, 324±43 mm, respectively. The differences between the above- and below-ca-
nopy ET indicated that oak canopy transpiration (Toak) was 281± 48 mm year−1, accounting for 67± 8% of the
total ET of the woodland. The Toak/ET ratio varied in seasons, similar to the pattern of oak's leaf area index but
opposite to that of soil moisture. We then tested two ET-partitioning models: Scott's long-term-regression-in-
terception (LTRI) model (Scott and Biederman, 2017) and Zhou's quantile-regression-maximum-slope (QRMS)
model (Zhou et al., 2016). Even though we expected that the two models would give divergent results since
theiremo working principles, both models captured reasonable magnitudes and seasonal patterns of the T/ET
ratio, as suggested by tower measurements. The study confirms that the LTRI and QRMS models are applicable
for savanna ecosystems, but some modifications are necessary for tree dominated areas. In combination with
field and modeling approaches, this study improves our understanding on the contributions of transpiration and
evaporation to total ET from ecosystems with vertical vegetation layers.

1. Introduction

Transpiration (from vegetation) and evaporation (mainly from soil
or other surfaces) are two main process-based components of evapo-
transpiration (ET), a critical parameter for understanding the carbon
and water cycles on Earth (Schlesinger and Jasechko, 2014). With the
eddy-covariance (EC) technique, we can now measure CO2 fluxes, but
also H2O vapor fluxes (i.e., ET), intensively at the ecosystem level all
over the world. Because of intrinsic interactions between the photo-
synthesis and transpiration processes, partitioning ET provides a fun-
damental data source for investigating water relations of carbon se-
questration and their potential variability in changing climates
(Nelson et al., 2018; Stoy et al., 2019). Specifically, we need the par-
titioned results to understand mechanisms of stomatal opening, leaf

growth, energy absorption, and water balance in controlling photo-
synthesis and transpiration processes. In return, these understandings
will help us to better predict the temporal and spatial variability of CO2

and H2O vapor fluxes. Thus, partitioning ET is critical for better de-
veloping process-based models and upscaling plant-based measure-
ments (e.g., sap flow data) (Saugier et al., 1997; Wilson et al., 2001).
Also, partitioning ET is highly demanded by validations of remote-
sensing and top-down models, which are essential for water manage-
ment in the area with limited water resources, such as in semi-arid or
arid areas, or even in mesic areas but threatened by increased drought
events due to climate change (Fisher et al., 2017; Humphrey et al.,
2018; Kool et al., 2014).

Savanna is a type of ecosystem where trees unevenly distribute in
herbaceous communities, forming the mosaic of woodlands and open
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grasslands. Such a landscape is often found in semi-arid areas, covering
approximately 20% of the total land area on Earth (Scholes and
Archer, 1997). The coexistence of trees and herbaceous communities
enhance competitions to water sources. In California, oak trees and
annual grasses coexist on the foothill of the Sierra Nevada Mountains.
Located in the typical Mediterranean Climate zone, the oak-grass sa-
vanna experience wet, mild winters and dry, hot summers. In general,
oak trees and annual grasses grow fast in the spring. As the rainy season
stops, soil surface and shallow layers become drier. Meanwhile, oak
trees can still maintain their necessary metabolic activities by accessing
soil moisture in deeper soil layers or tapping groundwater; annual
grasses die out and spread seeds dormant until the following rainy
season. Differences in phenological and water accessible niches suggest
that oak trees and annual grasses all contribute to the total ET via
transpiration, but their contribution fractions should vary over the
growing season (Baldocchi et al., 2004, 1997). Because the vegetation
structures in the savanna ecosystem are complex, horizontally and
vertically, testing the hypothesis in savanna ecosystems is quite chal-
lenging (Baldocchi et al., 2004; Kool et al., 2014).

ET measured with the eddy-covariance technique is a rich data
source for further quantifying T and E (Kool et al., 2014; Stoy et al.,
2019). As ET is measured from a single EC tower, the ET signal is a
combination of both T and E signals, which is a barrier to obtain ac-
curate values of transpiration or evaporation directly. A field solution is
to derive T from multiple EC towers, such as installing two towers
above and below the tree canopy (Baldocchi and Vogel, 1996;
Baldocchi et al., 1987; Paul-Limoges et al., 2020; Scott et al., 2003). The
primary concern of this approach is the possibility of insufficient tur-
bulent conditions around the understory tower. However, since tree
canopy is relatively open in the savanna area, chances of sufficient
turbulent conditions for valid field measurements are higher than
closed-canopy forests (Baldocchi and Meyers, 1991; Baldocchi et al.,
1997; Launiainen et al., 2005; Misson et al., 2007; Scott et al., 2003).
Many studies have compared understory tower measurements with
results of other direct approaches (e.g., sap flow, stable isotope) or
biophysical models (Black et al., 1996; Paul-Limoges et al., 2020;
Roupsard et al., 2006; Scott et al., 2003; Wilson et al., 2001). We,
therefore, gain enough confidence in using the multi-tower approach in
the savanna area.

In addition, it has been pointed out that the understory tower sig-
nals also include the contributions of the understory vegetation layer
(e.g., herbaceous communities), although an understory tower is often
considered as a measure of soil evaporation (Holwerda and
Meesters, 2019). Thus, we are here interested in testing whether the
understory ET could be further partitioned into the transpiration of
annual grasses and evaporation from soil and other wet surfaces (e.g.,
trunks, branches, leaves, and litters). Certainly, partitioning the un-
derstory ET needs the help of ET-partitioning models.

ET-partitioning models have been developed based on tower mea-
surements (Li et al., 2019; Scott and Biederman, 2017; Wei et al., 2017;
Zhou et al., 2016). A key thought behind the algorithm is whether first
to solve the T/ET or E/ET ratio. Since T/ET + E/ET ≈ 1, either ap-
proach is possible to partition ET into T and E. For example,
Zhou et al. (2016) proposed an algorithm based on leaf-level marginal
water use efficiency, which is an application of the theory of stomatal
controls on both photosynthesis and transpiration (more explanations
in the Methods section). In contrast, Scott et al. (2017) solved the E/ET
ratio with the assumption that transpiration should equal zero if gross
primary productivity (GPP) equals zero. The assumption leads to the
result that a mean value of E equals the interception of a valid linear
relationship between ET and GPP. Since these two approaches are based
on very different underlying principles, it will be interesting to compare
them and see whether their partitioning results are comparable with
what we learn from our field measurements.

Thus, our primary objectives for this study are: (1) to quantify the
magnitude of transpiration of oak trees and annual grasslands with CO2

and H2O vapor flux measurements from three eddy-covariance towers;
(2) to apply the two ET-partitioning models and compare their esti-
mates of the T/ET ratio against our tower measurements; (3) to com-
pare model results between each other. Based on differences in the
phenology of oak trees and annual grasses, we hypothesize that max-
imum water loss via transpiration occurs in the spring when vegetation
is in the most active photosynthesis, and consequently, transpiration
contributes a large portion of the total ET. Moreover, the T/ET ratio
would display seasonal variations, probably higher than the E/ET ratio
during the growing season (Wei et al., 2018). For evaluating the model
performance, we hypothesize that, at a minimum, they capture the
correct seasonal patterns of T/ET as suggested by field measurements.
In addition, we will discuss the model performance by comparing the
magnitudes of partitioned results between different calculation ap-
proaches.

2. Methods

2.1. Study sites

Our two study sites are in an oak-grass savanna, representing an
oak-dominated woody area (Tonzi Ranch, 38.438 N, 120.968 W) and
open grassland area (Vaira Ranch, 38.418 N, 120.958 W). In the
woodland area, oak trees are denser, and herbaceous communities co-
exist under the tree canopy and open space between trees (Fig. 1). The
open grassland area is dominated by annual grasses with fewer oak
trees scattered around the edge. The two sites are ~2 km apart, and the
average elevation is 177 m above sea level (asl) at the woody area site
and 129 m asl at the grassland site.

The study sites are within a typical Mediterranean Climate zone,
which has mild, wet winters and hot, dry summers. Over the 90-year
time frame from 1926 to 2016, average annual precipitation was
546 mm; mean annual temperature was 16.6 °C; the maximum tem-
perature was 23.5 °C; the minimum temperature was 9.7 °C (according
to climate data at the station of Camp Pardee, California, approximately
26 km from the study site; http://www.wrcc.dri.edu/cgi-bin/cliMAIN.
pl?ca1428).

At the oak woodland site, deciduous blue oaks (Quercus douglasii)
cover about 40% of the landscape with an average tree density ~ 144
stem ha−1, an average height 10.6 ± 4.6 m, and a basal area ~ 0.1 m2.

Annual grass species dominated under the tree canopy or in the
open area are C3 plants, such as Brachypodium distachyon, Bromus hor-
deaceous, Erodium cicutarium, Hypochaeris glabra, Trifolium dubium
Sibth., Trifolium hirtum All., Dichelostemma volubile A., and Erodium bo-
trys Cav. Their height varies over growing seasons. In normal years,
grasses germinate in the autumn, stays at ~ 0.1 m high through the
winter, and increased (almost linearly) up to ~ 0.7 m at the end of May,
according to our field observations.

The soil is an Auburn type, very rocky silt loam (Lithic haploxerepts),
about 0.75 m in depth (Tang et al., 2003; Xu and Baldocchi, 2003,
2004). Groundwater is ~8 m deep at the woody site and one-fold
deeper (~16 m) at the open grassland site. Other than precipitation,
groundwater is an important water resource for oak tree function
during dry summers as tapping roots grow through the fractured rock
layer (Ma et al., 2016; Miller et al., 2010).

2.2. Data collection and processing

Three EC towers, including two towers at the woody site and one at
the open grassland site, were established between the autumn of 2000
and the spring of 2001. At the woodland site, one tower is above the
tree canopy, ~23.5 m high, and the other two short towers (one below
the canopy, and the other in the open grassland area) are ~2 m high.

On the top of each tower, a sonic anemometer (Model 1352, Gill
Instruments Ltd., Lymington, United Kingdom) was installed for col-
lecting three-dimensional wind velocities in 10 Hz (updated to 20 Hz
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after 2017). An open-path infrared CO2 and water vapor analyzer
(IRGA, Li-7500, Li-cor, Lincoln, Nebraska, USA) measured CO2 and
water vapor concentration in 5 Hz (updated to 10 Hz after 2017). These
high-frequency data were collected by either a laptop or a data logger
(CR1000, Campbell Scientific, Inc., Logan, UT, USA), and then half-
hour average CO2 and H2O fluxes were computed using the MATLAB
(MathWorks Inc., R2015b, version 8.6.0) scripts written in house, in-
cluding spike removal, coordinate rotation, application of standard gas
laws, and corrections for density fluctuations (Webb, Pearman &
Leuning 1980).

We also measured environmental variables within the same half-
hour when CO2 fluxes were averaged. Atmospheric pressure (P, hPa)
was measured by using a barometer (PTB101B, Vaisala, Helsinki,
Finland). Water vapor deficit pressure (VPD, kPa) was calculated based
on air temperature and relative humidity measured by using a shielded
and aspirated sensor (HMP-35 A, Vaisala, Helsinki, Finland).
Precipitation (PPT, mm) with a rain gage (TE525, Texas Electronic,
Dallas, Texas, USA). Also, incoming photosynthetically active radiation
(μmol m−2 s−1) with a quantum sensor (Kipp and Zonen PAR-Lite,
Delft, Holland). Volumetric soil moisture (cm3 cm−3) was measured
with a frequency-domain reflectometer probe (ML2x, Delta-T Devices,
Burwell, Cambridge, UK). The meteorological and soil moisture sensors
were scanned every 5 s, and the 30 min means or sums (for the rain
gage) were calculated and stored with data-loggers (CR10X or CR23X,
Campbell Scientific Inc., Logan, UT, USA).

For data quality control, we visited the study sites and maintained
the instrument biweekly. The IRGA heads were calibrated every two or
three months in lab conditions. The flux data collected under low tur-
bulent mixing were screen out, determined by the half-hourly standard
deviation of high-frequency vertical velocity (σw) to reduce un-
certainties associated with the criterion of friction velocity (u*)
(Acevedo et al., 2009). We applied σw < 0.08 m s−1 for oak woodland,
σw < 0.03 m s−1 for understory grassland, or σw < 0.05 m s−1 for open
grassland. These criteria are equivalent to the threshold of friction

velocity u* between 0.1 and 0.2 m s−1 at our study sites. Also, data
collected under heavy rainfall (half-hour precipitation > 10 mm) or
other unpredictable situations (e.g., electronic reasons) were screened
out and treated as missing data. Consequently, the fraction of missing
data differed from year to year, approximately 32% on average. For the
interest of integration, data gaps were filled by combining linear in-
terpolations, mean diurnal variation, and spline smoothing methods;
refer to Ma et al. (2017) for more details.

Gross primary productivity (GPP) was estimated by subtracting
ecosystem respiration (Reco) from NEE on the half-hour scale (i.e.,
GPP = Reco – NEE), where Reco was estimated by a series of linear
regression models between nighttime NEE and soil temperature at 4 cm
depth within the 15-day moving window. The canopy storage term of
CO2 was computed only for the woody site with the two-tower algo-
rithm, which has been verified in-situ by a 4-layer CO2 profile system
along with the overstory tower (Ma et al., 2007, 2017; Xu and
Baldocchi, 2004). All data are avaliable on the AmeriFlux data website
(Baldocchi and Ma, 2001; Baldocchi et al., 2000).

2.3. Cumulative flux footprints and water flux components from each tower

The heights and locations of the three towers were designed to
obtain flux signals from distinguishable biophysical sources (Kim et al.,
2006; Ma et al., 2007). To visualize this intention, we employed the
footprint model of Hsieh et al. (2000) with a 2D expansion (Detto et al.,
2006). Half-hourly daytime-only footprints were calculated for a period
representative of the growing season (between Apr. 1 and Jun. 1,
2018). The aerodynamic canopy height of oak canopy was estimated
using surface layer theory and turbulence measurements using the al-
gorithm of Pennypacker and Baldocchi (2016), while the height of the
vegetation for the understory and open grassland sites was estimated
based on linear interpolations of biweekly measurements of the grass
height. Roughness length was calculated as a constant through non-
linear least square fit on the log wind equation for near-neutral

Fig. 1. (a) Cumulative footprints around the
two eddy-covariance towers at the woody-area
site and (b) around the tower at open grassland
site for a period representative of the growing
season, between Apr. 1 and Jun. 1, 2018. In
(a), the contours represent the area where 80%
of the daytime flux originated for that period,
showing a much larger footprint for the
overstory than for the understory tower. In (b),
the inner and outer contours represent 50%
and 80% footprint, respectively. (c) Savanna's
vertical vetegation structure and water flux
terms measured from each tower (see the text
for explanations to the symbols and equations).

S. Ma, et al. Agricultural and Forest Meteorology 295 (2020) 108204

3



conditions (Maurer et al., 2015), while displacement height was vari-
able and equal to 0.66 of the canopy height. Cumulative footprints for
the period described above are shown on top of the site's satellite image
obtained from Google Earth © with codes developed and tested in
previous studies (Eichelmann et al., 2018; Knox et al., 2016).

Fig. 1a and b show the cumulative flux footprints at each tower. The
overstory flux footprints covered a larger area (including oak trees,
understory layer, and open spaces), while the understory flux footprints
only covered smaller areas of grasses under the canopy and in the open
spaces between trees (Fig. 1a). In comparison, the open-grassland tower
mainly measured fluxes from the grasses (Fig. 1b). The bottom diagram
of Fig. 1 illustrates the vertical structure of the savanna and the water
flux components measured from each tower (Fig. 1c).

Theoretically, the fluxes from the overstory tower (ETover), the un-
derstory tower (ETunder), and the open-grassland tower (ETopen) can be
expressed in Eqs. (1) – (3), respectively, according to different bio-
physical sources (also shown in Fig. 1c):

= + + + +ET T T E E Eover oak grass soil wet canopy wet grass (1)

= + +ET T E Eunder grass soil wet grass (2)

= + +ET T E Eopen grass soil wet grass (3)

where Toak is the transpiration from oak canopy; “Tgrass” is the tran-
spiration from annual grasses; “Esoil” refers to evaporation mainly from
soil; “Ewet-canopy” refers to evaporation from wet surfaces within the tree
canopy layer, such as wet leaves and branches; “Ewet-grassy” refers to
physical evaporation from wet surfaces below the tree canopy, such as
grass leaves, tree trunks, grass litter, or coarse woody debris.

2.4. Deriving Toak from the two-tower measurements

Our preliminary analysis showed that (1) ETover > ET under in gen-
eral; (2) the differences in the seasonal patterns of ETover and ETunder.
ETover and ETunder both had a remarkable drop from wet season to dry
season, but ETover decreased slower than ETunder (Fig. 2a and b). This
divergence reflected the fact that tree canopy continuously functioned
during the dry summer, while annual grasses died out in the same
summer months. With this observation, we subtract Eq. (2) from
Eq. (1), canceling out Esoil and Ewet-grass:

= +ET ET T Eover under oak wet canopy (4)

Then, by arranging Eq. (4), we get Eq. (5):

=T ET ET Eoak over under wet canopy (5)

Ewet-canopy can be significant when surfaces are wet, following the
occurrences of dew or rain interception. However, since the savanna
experiences typical Mediterranean Climate, the wet season combines
with cold temperature; grasses stay in green but grow very slowly; oak
trees are dormant, having no leaves yet. Thus, during such a wet-cold
period (e.g., from December to early March of the following year),
E ET ETwet canopy over under , as Toak→ zero. The cold temperature also
limits the evaporation of the soil and other wet surfaces. Until tem-
perature increases above 10°C in the late spring (e.g., from late March
to late May), trees put on leaves, and Toak >> Ewet-canopy. Thus, we
considered Ewet-canopy as a negligible term in most months.
Approximately,

T ET EToak over under (6)

Thus, we used Eq. (6) for deriving Toak from the two-tower mea-
surements in general. We discussed the uncertainties associated with
the approximation in the Discussion section.

2.5. T and E denoted by the partitioning models and related approximations

Because Tgrass, Esoil, and evaporation from other wet surfaces were
not measured directly and seperately in the field, the ET partitioning

models were needed for further parititioning (see the next sub-section
“2.6″). We noticed that the partitioning models give total results of
transpiration or evaporation terms, which are not always the same as
the source-specific terms expressed in Eqs. (1)–(3. For clarity, we de-
fined T and E to refer to the “total transpiration” and “total evapora-
tion”, respectively, and referred them back to the source-specific terms
(Table. 1).

Because the savanna has a vetical vegetation structure, the total
transpiration term from the overstory is the sum of water fluxes from
oak canopy and understory grasses: = +T T Toak grass. For comparison
purposes, we consider T ≃ Toak. First, Tgrass→ zero after annual grasses
die out at the beginning of the dry season (e.g., the end of May).
Second, Toak >> Tgrass once oak trees put on leaves in the late spring
(e.g., the late March).

For the same reason for neglecting Ewet-canopy, the evaporation tems
from other wet surfaces (i.e., Ewet-grass) was also negligible during the
cold months and dry summer months. Thus, Esoil is the majority of E:
E ≃ Esoil.

We discussed the uncertainties associated with these approxima-
tions in the Discussion section. In addition, no approximations were
needed when ETunder or ETopen were partitioned with the models, as T =
Tgrass, where Tgrass represents the grasses under the canopy or in open
area. The open grassland tower provided an independent dataset re-
presenting the behaviors of annual grasslands, giving us an extra chance
to refine our interpretations of the understory measurements (Fig. 2c).

2.6. ET-partitioning models

As explained earlier, we chose to focus on Scott's model (Scott and
Biederman, 2017) and Zhou's model (Zhou et al., 2016). These models
both start from the linear relationship between GPP and ET, but their
working principles are different (Fig. 3). To be clear in comparisons, we
renamed the two models to emphasize their statistical procedures, that
is, Scott's model as the long-term-regression-intercept model (LTRI) and
Zhou's model as the quantile-regression-maximized-slope model
(QRMS).

The LTRI model is based on the ET-GPP linear regression analysis.
On relatively larger temporal and spatial scales, transpiration should
equal zero when GPP is zero, which means no primary productivity
gains if there is no water investment. With this assumption, the inter-
cept of the ET-GPP linear relationship can be interpreted as a mean
value of E on a relatively large spatial scale. This approach requires
multi-year flux measurements integrated over a relatively long period,
such as annual or monthly integration (Scott and Biederman, 2017).
Our preliminary results showed that the linear models could be sig-
nificant on an annual basis but with higher uncertainties for individual
towers. Thus, we pooled the three-tower data together for estimating a
mean E value of the studied savanna landscape annually and monthly.
For the convenience of discussion on longer timescales (e.g., monthly),
we used the units of “g C m−2″ for GPP and “mm” for ET and its
components (equivalent to “kg H2O m−2″), respectively. Also, using the
unit of “mm” is consistent with the unit for precipitation commonly
defined in meteorology or hydrology.

The QRMS model also relies on the linear relationship between
tower-measured GPP and ET, but its working principle is built upon the
theory of stomata's optimized behavior; that is, stomata intend to
maximize carbon assimilation with a given water investment.
Zhou et al. (2016) developed the algorithm for extending this theory on
the ecosystem scale with the use of intensive tower data. First, a con-
cept of “underlying water use efficiency” (uWUE) is defined:

=uWUE
GPP VPD

ET
f , where VPDf is a proxy of leaf-to-air water vapor

mole fraction (mol mol−1). In particular, VPDf is converted from the
fraction of water vapor pressure deficit (VPD) to air pressure (P):
VPDf = VPD/P, both in the unit of kPa. Second, the model defines two
more related concepts: “apparent” uWUE (i.e., uWUEa) and “potential”
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uWUE (i.e., uWUEp), depending on the time taken into account. The
uWUEa focuses on short periods (e.g., weekly or monthly), while the
uWUEp regards an entire growing season. In other words, the uWUEp
describes an ideal status determined by local climate and vegetation,
while the uWUEa reflects vegetation's biological responses to instant
changes in environmental conditions. Furthermore, the T/ET ratio can
be determined as =T

ET
uWUE
uWUE

a
p
(refer to Zhou et al. (2016) for details).

Zhou et al. (2016) suggested applying the 95th percentile linear
regression analysis for estimating the uWUEp but using regular linear
regression analysis for determining the uWUEa. In this study, we first
followed this suggestion, which resulted in a T/ET ratio lower than that
of oak transpiration of the two-tower measurements. We realized that
using the analysis of regular linear regression might underestimate
uWUEa because the regular linear regression analysis focuses on

Fig. 2. Box-plots of daily sums of gross primary productivity (GPP) and evapotranspiration (ET) averaged over every 15-day period (Notes: the last period has five or
six days.). The panels show the measurements above the tree canopy (a), below the tree canopy (b), and over the open grassland (c) over the study period from 2001
to 2019 (i.e., n = 19). Each box shows median, percentiles (1, 25, 75, and 99%), and mean (in circles).

Table 1
Theoretical and simplified equations of evapotranspiration (ET) in the expres-
sion with total transpiration (T) and total evaporation (E) and the source-spe-
cific terms (refer to the text and Fig. 1c for details).

Tower
Location

Evapotranspiration
(ET) in total terms

Source-specific terms
of T or E

Simplified
Equations

Overstory ETover = T + E T = Toak + Tgrass
E = Esoil + Ewet-
canopy + Ewet-grass

ETover ≃
Toak + Esoil

Understory ETunder = T + E T = Tgrass
E = Esoil + Ewet-grass

ETunder ≃
Tgrass + Esoil

Open area ETopen = T + E T = Tgrass
E = Esoil + Ewet-grass

ETopen ≃
Tgrass + Esoil
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“average” conditions rather than “maximum” values, which might be
inconsistent with the theory of optimized stomatal behavior. Thus, we
tried the quantile regression analysis in estimating uWUEa, instead.
Also, because uWUEa must be determined for each short period, the
number of flux data involved in calculation is smaller than that over the
entire growing season. Therefore, the percentile threshold suggested for
uWUEp (i.e., the 95th percentile) might be too high for uWUEa as out-
liers were involved. Thus, we tried the 70, 80, and 90th percentiles,
respectively. Based on such comparisons, the 80th percentile gave the
best agreement with the field measurements (see Results).

All statistical analyses were processed with the standard statistical
software package SAS (Version 9.4, SAS Institute Inc., Cary, NC, USA).
The significance level was set to the probability value (p-value) at 0.05.

3. Results

3.1. Tower-measured ETover, ETunder, Toak, and T/ET ratios

ETover, ETunder, and Toak all varied over the growing season with
differences in the magnitude and the timing of their maxima (Fig. 4a).
Their decreasing rates after the peaks were also different. Toak peaked in
the spring, and ETover matched Toak gradually as the understory annual-
grass communities died out at the onset of dry summer, shown as a
sharper decrease in ETunder with the decrease in soil moistures (Fig. 4c).
It suggests that the total transpiration of the ecosystem (T) is dominated
by Toak, and the T is significantly larger than ETunder throughout the year
except in the early spring when their magnitudes are comparable.

We calculated the T/ET ratios regarding each vegetation layer. First,
the Toak/ETover ratio indicated the fraction of oak canopy transpiration
versus the total ET of the woodland area. The ratio values clearly
showed seasonal variations with a summer peak (Fig. 4b). Toak ac-
counted for a large percent of ETover (> 90%) during the dry summer
months, even though ETover continued to decrease.

Second, we considered ETunder/ETover as a proxy of grass transpira-
tion over ETover (i.e., Tgrass/ETover) since evaporation from the soil and
other wet surfaces was considerably smaller than Tgrass during the
growing season (compare Fig. 5b with Fig. 4a). Compared with the
seasonal pattern of the Toak/ETover ratio, the proxy of Tgrass/ETover

showed an opposite seasonal pattern, which agreed with the phenology
of annual grasses. Due to the absence of annual grasses during the dry
summer months, the contribution of plant transpiration (e.g., from
perennial species) was limited, as low as 10%. Because annual grasses
germinate in the autumn and grow fast in the spring, the transpiration
of annual grasses contributed more to ETover in the spring, up to 60%.

In those wet-season months, the values of the Toak/ETover ratio were
close to those of the ETunder/ETover ratio (Fig. 4b). As oak trees were
dormant in winter months, the Toak/ETover ratio was determined mainly
by the physical process of evaporation from wet surfaces within the oak
canopy (i.e., Ewet-canopy), following dews or rain interceptions (moe ex-
planations in the Methods). During these cold months, transpiration
from understory grasses was also low due to slow growth rate under low
temperatures. That is why the magnitude of Toak/ETover ratio was si-
milar to that of ETunder/ETover (the proxy of Tgrass/ETover) (Fig. 4b).

3.2. The LTRI model: from E to T/ET

Since the LRTI model was designed for seeking the long-term, cli-
mate-determined pattern over a relatively large area, we pooled the
data from the three towers altogether (Fig. 5a). The linear relationship
between ET and GPP was significant on an annual basis (R2 = 0.93, p<
0.001) with an intercept of 53±10 mm year−1. Thus, a mean annual E
over the savanna landscape was between 40 and 70 mm year−1, which
means 7%−12% of mean annual precipitation (563± 226 mm, see
Table 2).

We then established the LTRI model for each month across three

Fig. 3. Flowcharts of the frameworks of the two ET-partitioning models ex-
amined in this study: Scott's long-term-regression-intercept model (LTRI) and
Zhou's quantile-regression-maximized-slope model (QRMS). Notice that GPP
and ET are gross primary productivity and evapotranspiration derived from the
CO2 and H2O fluxes, respectively; GPPVPDf means gross primary productivity
corrected by water vapor deficit in mole fraction, =GPP GPP VPDVPDf f ; T re-
fers to transpiration; E refers to evaporation from soil or other surfaces). Also,
the dash-line block indicates the part subject to a modification proposed in this
study.

Fig. 4. Seasonal patterns averaged over the studied years: (a) daily integrations
of evapotranspiration measured from the overstory (ETover), understory tower
(ETunder), and oak canopy transpiration (Toak); (b) the ratio of oak canopy
transpiration to the total evapotranspiration of the savanna (Toak/ETover) and an
approximate ratio of grass transpiration to the total evapotranspiration of the
oak woodland area (i.e., Tgrass/ETover ≈ ETunder/ETover); (c) volumetric soil
moisture (θv) at the soil surface (0 cm) and the depths of 20 and 50 cm.
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towers over the studied years. The partitioned mean monthly E values
showed a strong seasonal pattern (Fig. 5b). In general, the evaporation
value was high in the spring months (Feb. – Jun.), low in the summer
months (Jul. – Sep.), and slightly increased again in autumn months
(Oct. – Dec.) as raining season resumed. In other words, soil and surface
evaporation was higher in the wet season than in the dry season, as
expected.

With the estimates of monthly E, the E/ET ratio was calculated, and
the T/ETwas obtained according to T/ET= 1− E/ET. In particular, for
the overstory tower, T/ETover = 1 − E/ETover. Similarly, T/ETunder or T/
ETopen could be explicitly calculated by using the data from either the
understory or open grassland tower (Refer to Table 1 on labeling). To
validate the LTRI modeled T/ET results, we compared their seasonal
patterns with those suggested by tower measurements. Theoretically,
regarding the overstory tower, the LTRI-modeled T/ET ratio could
combine contributions from oak canopy and understory grass commu-
nities (i.e., T = Toak + Tgrass). However, since T is dominated by Toak
most of the time (Fig. 4a), the seasonal pattern of the LTRI-modeled T/

ET ratio resembles that of Toak/ETover derived from the two towers (i.e.,
T/ETover ≈ Toak/ETover, compare Fig. 6a with Fig. 4b). In the grass-
dominated open area, the LTRI-modeled T/ET shows a pattern similar
to that of the ETunder/ETover ratio (i.e., Tgrass/ETopen ≈ ETunder/ETover,
compare Fig. 6b with Fig. 4b)

Also, Scott et al. (2017) suggested that the seasonal pattern of the T/
ET ratio likely agreed with that of LAI. Thus, we compared their sea-
sonal patterns regarding canopy and annual grass, separately (Fig. 6).
The respective LTRI-modeled T/ ET ratio highly covaried with oak's or
grass’ LAI over the growing season (Fig. 6b and e). Statistically, the
seasonal variations in LAI of oak trees and annual grasses could explain
60% and 52% of seasonal variations of the T/ET ratios, respectively,
with linear regression analysis (p < 0.01).

While the oak T/ET seasonal pattern was correlated to LAI, the
seasonal pattern did not coincide with that of soil surface moisture
(Fig. 6a and c). In contrast, the grasses T/ET seasonal pattern was
corresponding to that of soil surface moisture (Fig. 6d and f). This
dissimilarity reflects the difference in water availability between oak
trees and annual grasses. While annual grasses much depend on soil
moisture in shallow soil layers, oak trees could access soil water in
deeper soil layers, even groundwater, allowing them to remain active
during the dry summers.

3.3. The QRMS-model: from uWUE to T/ET

We applied the QRMS model for estimating monthly uWUEp and
uWUEa for each growing season (Fig. 7). Particularly, oak canopy had a
multi-year mean uWUEp at 3.3 mol mol−1 (CO2 vs. H2O vapor) with
0.37 mol mol−1 standard deviation across years; the grasses’ mean
uWUEp was 1.6 ± 0.21 and 1.8 ± 0.25 mol mol−1 for the understory
or open grassland, respectively; the overstory tower (entire woody sa-
vanna) showed uWUEp = 2.2 ± 0.20 mol mol−1.

The values of uWUEa estimated with the regular linear regression
analysis tended to be lower than the values calculated with the quantile
linear regression analysis (Fig. 7b and d). While the uWUEp was treated
as a constant for each year, the uWUEa was determined by differences in
biotic and abiotic conditions among months, reflecting how the T/ET
ratio varied over the growing season. However, the magnitudes of value
uWUEa highly depended on the regression methods (Fig. 8b and d).

For the oak woodland area (measured from the overstory tower),
the QRMS-reg model showed a seasonal pattern of the T/ET ratio dif-
ferent from the two-tower result with the peak, about two months
earlier than that of the two-tower result. In contrast, the 80% quantile
regression analysis (QRMS-Q80) captured the seasonal pattern from the

Fig. 5. Panel (a): The relationship between annual integrations of evapotranspiration (ET) and gross primary productivity (GPP) over the savanna landscape,
including data measured from the overstory and understory towers at the woody savanna site and the open-grassland tower. Panel (b): Monthly surface evaporation
(E) with standard error bars.

Table 2
Multi-year averages and standard deviation (± std) of annual integrations of
gross primary production (GPP), precipitation (PPT), and evapotranspiration
(ET) measured at the woody savanna, understory grassland, and open grass-
land. For each location, transpiration (T) and evaporation (E) are partitioned by
the LTRI model and the QRMS model with two algorithms for estimating
uWUEa: the regular regression analysis (QRMS-reg) or the 80% quantile re-
gression analysis (QRMS-Q80). Refer to the Methods and Table 1 for variable
notations. Notice that annual integration is based on the hydrological year,
from Oct. 1 – Sep. 30 of the following calendar year.

Variable Units Method Woody
Savanna

Understory
Grassland

Open
Grassland

Field Measurements
GPP gC m−2

year−1
EC tower 924±185 302±70 708±153

PPT mm Rain gage 563±226 – 592±199
(ETover) (ETunder) (ETopen)

ET Mm ECtower 419±85 167±36 324±43
Toak Mm iTwo-tower 281±48 – –
Model Results
T Mm LTRIii 309±63 66±15 214±27

QRMS-reg 162±30 71±16 153±23
QRMS-Q80 257±47 107±23 211±30

E Mm LTRI 110±22 101±23 113±17
QRMS-reg 246±58 92±20 168±27
QRMS-Q80 151±42 57±14 109±21

S. Ma, et al. Agricultural and Forest Meteorology 295 (2020) 108204

7



two towers. While the QRMS-reg algorithm produced the values of T/
ET ratios lower than those values from the two-tower, the QRMS-Q80
algorithm reduced the divergence (Fig. 8a). Also, the LTRI results were
comparable to the two-tower results (Fig. 8a). It confirms that the
contribution of evaporation from within the oak canopy towards Toak
calculated with the two-tower method is likely negligible.

For the understory grassland, the QRMS-reg and QRMS-Q80 results
showed the seasonal pattern of T/ET relatively comparable to the pat-
tern suggested by ETunder/ETover, but the QRMS-reg values during the
wet, cold months were lower than the results of the QRMS-Q80
(Fig. 8b). Compared to the trend suggested by ETunder/ETover, the LTRI
model tended to underestimate the T/ET ratio in these spring months
probably because the LTRI-estimated E is an ecosystem level average,
ignoring the effects of the tree canopy on the evaporation of water from
soil or other wet surfaces below the canopy. LTRI-estimated average
ecosystem E is likely higher than the actual evaporation relevant for the
understory tower. In addition, the ETunder/ETover includes the con-
tribution of soil evaporation in ETunder, causing T/ET overestimated. In
other words, the QRMS-reg algorithm may be more suitable for grass-
land, as suggested by Zhou et al. (2016).

For the open grassland, the QRMS-reg, QRMS-Q80, and LTRS model
results were comparable to one another, overall following the trend of
the approximate pattern, overall (Fig. 8c). Again, during the wet, cold
months, the QRMS-Q80 values were higher than the results of the
QRMS-reg. And, the LTRI-estimated T/ET ratios were comparable to the
results of QRMS-reg, agreeing with the suggestion of Zhou et al. (2016)
that the QRMS-reg algorithm worked for grassland. Moreover, the LTRI-

estimated T/ET ratios in the summer months were considerably higher
than the results of the QRMS-reg or QRMS-Q80. This result is also as-
sociated with the uncertainty in the estimation of E, combined with the
fact that total ET is near-zero during those months at this site (Fig. 2c),
so small changes in E have a disproportionately large effect on the T/ET
ratio.

3.4. Model performances

The reasonable T/ET seasonal patterns gave us confidence in par-
titioned results of transpiration. However, the timescale for estimating
reliable T/ET ratio can not be too fine (e.g., < one month) because
these two ET partitioning models need data sample size large enough
for operating statistical analysis. We tested model performances in two
steps.

First, we applied the monthly T/ET ratio to estimate daily tran-
spiration with the assumption that the monthly T/ET ratio should re-
main relatively stable within the same month. Overall, under the
Mediterranean-type background climate, the magnitude and variation
in daily transpiration were reasonable compared to tower measure-
ments (as shown in Fig. 9).

To evaluate the performance of the models, we compared the results
of the LTRI models, the QRMS-reg, and the QRMS-Q80 algorithms. For
the oak woodland, since we have known that the QRMS-reg algorithm
did not give a trustable seasonal pattern of T/ET ratio (as shown in
Fig. 8a), we focused on the results of LTRI and QRMS-Q80 models. The
LTRI model overestimated Toak by about 30%, whereas the QRMS-Q80

Fig. 6. Seasonal patterns of the LTRI modeled T/ET ratio, leaf area index (LAI), and soil surface moisture (θv) regarding oak canopy (a, b, and c) and annual grasses
(d, e, and f), measured at the woody savanna site and open grassland site, respectively.
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results showed only a 2% difference from the 1:1 line (Fig. 10a and b).
The three approaches left significant uncertainties for understory

grasslands. The results of the LTRI model showed 25% and 47% un-
derestimated understory grass transpiration, compared to the results of
QRMS-reg and QRMS-Q80 models (Fig. 10c and d).

For the open grassland, the LTRI model results were about 6% dif-
ferent from the QRMS-reg results but about 18% lower than the QRMS-
Q80 results (Fig. 10e and f). Still, the QRMS-reg algorithm performed
better for the open grassland.

3.5. Contributions of annual transpiration and evaporation at the savanna

Based on the three-tower measurements, we observed that annual
ET (± standard deviation) was 419±85 mm, 167± 36 mm,
324±43 mm from the oak woodland, understory grassland, and open
grassland, respectively (Table 2). The differences between the above-
and below-canopy ET indicated that oak canopy transpiration (i.e.,
Toak) was 281±48 mm year−1, accounting for 67% of the total ET in
the woody savanna area (i.e., ETover).

Further, the ET-partitioning models enabled us to quantify the
amount of transpiration for each vegetation layer. In the oak woodland
area, ~67% of the total ET (i.e., ETover) was from oak canopy's tran-
spiration, while the understory grass transpiration contributed ~16% of
ETover. The remaining ~17% were from physical evaporation from the
soil or other plant surfaces. In the open grassland area, grass con-
tributed ~67% of the total ET (i.e., ETopen), and soil evaporation con-
tributed ~33% of the total ET (i.e., ETopen) (Table 2).

4. Discussion

This study provides a basic idea of the percentage of T and E over

the savanna landscape in California. In combination with field and
statistical modeling approaches, our analysis shows that the percentage
of oak canopy's transpiration contribution to the total ET in the oak
woodland area is similar to the percentage that annual grasses’ tran-
spiration in the open area, ~67%. This result is within the global range
of 50% ~ 76% (Schlesinger and Jasechko, 2014; Wei et al., 2017) and
consistent with previous studies on ET partitioning with the eddy-cov-
ariance towers (Li et al., 2019; Scott and Biederman, 2017; Zhou et al.,
2018). However, the contributed percentage increases up to 83% in the
oak woodland area when the 16% contribution from understory grasses
is taken into account as well. Thus, over the savanna landscape, the
percentage of vegetation transpiration from the area with multiple
vertical vegetation layers, such as the oak woodland area, is higher than
that from the area with less vertical layers, such as the open grassland
area. Meanwhile, the contributed percentage from understory grasses is
much less than that of tree canopy, due to understory species features
and overstory effects on grass growth. In addition, the uncentainties
from negelecting evaporation from wet surfaces (e.g., Ewet-canopy and
Ewet-grass) are small, ~2–4%.

We carefully compared the performances of two ET-partitioning
models. Although we cannot compare all models in one single study,
such a comparison study is helpful for better evaluating how well these
models work for the savanna ecosystems in terms of predicted values
and seasonal patterns. Intuitively, one may think that the seasonal
pattern of T should be coincident with that of ET, which is what we see
here, but the seasonal pattern of the T/ET ratio may not be similar to
that of ET. Thus, we checked the seasonal pattern of the T/ET ratio first.
As the results show, oak trees transpired at the peak in the late spring
but contributed the most significant portion of ET in the summer, while
annual grasses transpired and contributed the most altogether in the
spring. The differences in the T/ET seasonal patterns indicate the role of

Fig. 7. Calculating potential (uWUEp) and actual uWUE (uWUEa) with the linear relationship between half-hourly CO2 and H2O fluxes (gray circles). The panels
include data from the overstory (a and b), understory (c and d), and open grassland (e and f) towers. The upper panels (uWUEp) include data from the growing season
of 2018, while the bottom panel (uWUEa) show data from May 2018, as an example. Notice that, for consistency in labeling, the CO2 and H2O fluxes are labeled by
gross primary productivity (GPP) and evapotranspiration (ET), respectively; GPPVPDf means gross primary productivity corrected by water vapor deficit in mole
fraction. Lines are results of the 95% quantile regression (Q95) for uWUEp, the regular linear regression analysis (reg) and 70% (Q70), 80% (Q80), and 90% (Q90)
quantile regression for uWUPa.
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phenology in determining the T/ET ratio; the patterns are comparable
to the seasonal variations in LAI of oak canopy and annual grasses. This
finding agrees with the results of previous studies (Li et al., 2019;
Saugier et al., 1997; Scott and Biederman, 2017; Wilson et al., 2001).

Nevertheless, the seasonality of soil moisture may drive that of
transpiration in semi-arid ecosystems (Wang et al., 2018). Our analysis
provides an opposite example. As oak trees maintain functioning
throughout dry summers, but oak trees most likely utilize soil moisture
in deeper soil layers and can obtain a small amount of groundwater
with tapping roots growing through bedrocks (Miller et al., 2010).
Thus, when soil moisture is measured only in shallow soil layers, those
measurements cannot reflect the seasonal changes in oak canopy
transpiration (as shown in Fig. 6).

In this study, Toak derived from the overstory and understory eddy-
covariance towers serves as an independent observation allowing fur-
ther model validation. As mentioned earlier, although the two-tower
setting is associated with uncertainties between tower footprints (as

shown in Fig. 1), the flux data show seasonal patterns indicating bio-
logical performances of dominant vegetation within the footprints of
individual towers. This two-tower partitioning approach is not perfect
but provides independent field measurements for validating model re-
sults, especially for a site with relatively open canopy (Paul-
Limoges et al., 2020; Scott et al., 2006).

The two ET-partitioning models that we tested here have different
pros and cons. Besides those that we have summarized in the flowchart
(Fig. 3), we notice a few other things in this study. First, the un-
certainties of the LTRI model could be high if analyzed flux datasets
have a limited number of years. Second, the multi-tower approach helps
to reduce the model uncertainty, as shown by the improvement of R2

value when moving from a single-tower to a multi-tower approach.
Third, the LTRI model may underestimate the monthly T/ET ratio of the
wet months. As we pooled the three-tower data together, we assumed
that E values are the same at the three sites. As a result, the LTRI model
estimates an E value averaged over the towers. This assumption is valid,
given a relatively large timescale. However, the effects of tree canopy
on understory soil evaporation could be significant when the timescale
was reduced to one month while micro-environmental factors come
into influence at individual locations. For example, oak canopy can
affect understory energy balance significantly, causing an over-
estimation of understory soil evaporation. Finally, we conducted a
daily-value comparison of individual years by assuming that the sea-
sonal pattern of T/ET is climatically stable (e.g., Mediterranean Cli-
mate). The QRMS model can be more reliable for estimating the year-

Fig. 8. Monthly T/ET ratios (± standard error bars, n = 18) estimated by the
long-term-regression-intercept model (LTRI) and the quantile-regression-max-
imum-slope model (QRMS) using the regular linear regression analysis (QRMS-
reg) or quantile regression at the percentiles of 80% (QRMS-Q80) for estimating
uWUEa at the oak woodland area, the understory grassland, and the open
grassland. The band in (a) is the T/ET ratio of oak canopy based on the two-
tower approach (i.e., Toak/ETover); the band in (b) and (c) is the ratio of un-
derstory to overstory ET (i.e., ETunder/ETover) as an approximation of grass
transpiration vs. total ET of the savanna (with no ET partitioning).

Fig. 9. Daily transpiration partitioned by the LTRI, QRMS-reg, and QRMS-Q80
methods, compared with tower measurements of (a) oak canopy (Toak), (b)
understory grassland (ETunder), and (c) open grassland (ETopen).
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specific monthly transpiration because of the short period of half-hourly
data used in the analysis (Zhou et al., 2018).

The QRMS model initially suggests the regular regression analysis
(i.e., QRMS-reg) for estimating uWUEa. This QRMS-reg approach works
for the open grassland. However, in the case of oak woodland, the
QRMS-reg approach underestimates uWUEa and later the T/ET. In this
situation, the QRMS-Q80 modification improved the model perfor-
mance. The reason for conducting the adjustment for each month is also
according to the theory of stomatal behavior optimization. Probably,
the stomatal behavior optimization of trees is more significant than that
of grasses regarding a short period (e.g., a month). At the leaf level,
stomata optimize its openness or closure for maximized carbon assim-
ilation with a unit of water investment. In this sense, stomatal behaviors
(i.e., openness or closure) intend to maximize the amount of CO2 as-
similation (A) for a given amount of water loss via transpiration (T),
such that A

T
→ maximum (Lloyd, 1991). Thus, uWuEa

A
T → max-

imum. In other words, when uWUEa is estimated for each month, the
quantile regression analysis is still valid for better representing the
stomata-related behavior under the monthly circumstances, in-
vestigated at the ecosystem level (Lin et al., 2015; Medlyn et al., 2011).
As the number of half-hourly tower flux data used for estimating uWUEa
is much less than that for uWUEp over the entire growing seasons, the
selection of the percentile depends on the actual size of data sets. For
this 19ren-year data set, the 80% percentile gives the best agreement
with the two-tower results. For a data set smaller than ours, the per-
centile threshold may initiate from somewhere between 70% and 80%.

A possible concern, regarding the quantile regression, is that the
performance of the technique seems to depend on the setting of a
threshold of the percentile. However, for large datasets, a quantile
threshold should converge towards an underlying value according to
probability theory. For smaller datasets, on the other hand, the quantile

threshold could be disproportionately influenced by individual outliers.
For example, when the quantile regression is applied for a shorter
period (a month), the sample size of the short period is smaller than
that of a more extended period (an entire growing season). In this case,
if the threshold of the percentile is set up too high (e.g., keeping the
threshold at the 95th percentile), the outliers may overwhelm the rest
of meaningful samples. We, therefore, took an empirical approach in
determining the threshold of percentiles by testing the 70, 80, and 90th
percentile thresholds. Based on this comparison, the 80th percentile
provided the best agreement with the field measurements of oak ca-
nopy. The QRMS-Q80 modification is not a perfect solution but could
be a starting point for partitioning ET from other woody savanna or
forest ecosystems.

After all, the quantile regression approach adds a new vision of data
analysis with a large sample size, which is meaningful for applications
of the eddy-covariance tower data. The eddy-covariance tower settings
are in the framework of “natural” experiments (non-manipulative, non-
factorial experiments). The idea of seeking “maximum” (or
“minimum”) slopes gives researchers a chance to look at the moment
when photosynthesis and transpiration processes are fully coupled
along with optimized stomatal behaviors. Such “ideal” situations
probably occurred in daytime hours during the spring months because
oak trees and annual grasses are active in photosynthesis and growth,
and their transpiration rates peak at the same time. If we search for the
“ideal” situations day by day, or period by period, we would miss them
just because the working timescale is too rough. The QRMS model fo-
cuses on the half-hour scale. In other words, the “ideal” situations are
sparse in thousands of discrete half hours. Our half-hourly flux data
accumulated over 19 years empower this data-driven approach.

While we discuss uncertainties in estimating uWUEa, it is also pos-
sible that the underestimated T/ET ratio results from the overestimation

Fig. 10. Panel (a) and (b): comparing canopy transpiration (mm) partitioned by the LTRI model or by the modified QRMS model (QRMS-Q80) with two-tower-
derived results during oak's growing season (between April – October). Panel (c) – (f): comparing grass transpiration (mm) partitioned by the LTRI model to the
QRMS-reg or QRMS-Q80 modes for the understory grassland (c and d) and open grassland (e and f) during the growing season of annual grasses (between Nov. to
following Jun). Notes: in each plot, the solid line indicates the predicted values of the linear regression model; short-dashed lines indicate the 95% upper and lower
confidence limits for the expected values; the long-dashed line indicates the 1:1 line. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.).
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of uWUEp because of water-stressed conditions in the growing season
(Zhou et al., 2018). In this savanna landscape, oak trees’ growing
season covers the dry summers while annual grasses have already been
senescent. Thus, the overstory tower has more chances to sample water-
stressed situations than the open grassland tower does. We re-calcu-
lated oak canopy's uWUEp by excluding the summer months (e.g., from
July to October), but the uWUEp values were not changed as much as
expected. From the perspective of large-sample analysis, excluding
“water-stressed” conditions is not a proper solution. It may be possible
to run the quantle regression analysis without setting zero intercept to
reducee the uncertanty caused by dry conditions. Also, we may borrow
some machine learning methods to select a quantile value appropriate
for running the quantile regression analysis (Nelson et al., 2018).

Also, it is worth pointing out that the QRMS model is based on the
leaf-level model, but the leaf-to-air water vapor mole fraction differ-
ence, D, is difficult to be measured at the ecosystem level and replaced
with VPDf. This replacement involves an underlying assumption, that is,
leaf and air temperature are approximately equilibrium. The pre-
sumption may hold in general on the daily or seasonal scale but not on
finer timescales (e.g., hours). Since the timeframe of input data for
establishing the GPP-ET relationship is half-hourly, it may be necessary
to test how much the assumption could influence the model results in
the future. For the goal of this study, we kept VPDf here. In this way, the
units for uWUE only depends on the units used for GPP and ET, such as
mol mol−1 (CO2 and H2O fluxes), consistent with the unit used in ty-
pical leaf-level studies. By comparing the LTRI and QRMS models, we
showed that the effects of VPD were not negligible on half-hourly flux
data, but the effects diminished on longer timescales, such as monthly
or annual. That is why the QRMS model needs VPD correction, but the
LTRI model does not need it before establishing the ET-GPP relation-
ship.

Other than the two ET-partitioning models tested in this study,
many different models have been reported. For example, Scanlon and
Kustas (2010) applied the flux-variance-similarity theory and devel-
oped a model estimating the T/ET ratio from high-frequency mea-
surements of CO2 and water vapor concentrations and their variances
and correlations (Skaggs et al., 2018). Li et al. (2019) presented a model
that extracts the T/ET ratio from soil and canopy conductance by ap-
plying Penman-Monteith Equation. Nelson et al. (2018) introduced an
alternative data-driven algorithm with a nonlinear machine learning
method for identifying the transpiration-dominated period based on
GPP and ET data from eddy-covariance towers. More comparison stu-
dies across these proposed models are needed in the regional or global
flux data network (e.g., FLUXNET). Separating transpiration from
evaporation enhances our process-based understanding, which will
better constrain large-scale remote sensing and modeling efforts for
furthering ecological and social adaptations in changing climates
(Fisher et al., 2017).

5. Conclusions

In combinations with field measurements and ET-partitioning
models, we learn that over this Californian savanna landscape, annual
ET (± standard deviation) from the oak woodland was 419±85 mm.
Among the total ecosystem-level evapotranspiration, oak canopy tran-
spiration contributed ~67%, understory grasses transpiration con-
tributed ~16%, and surface evaporation was ~17. In comparison, the
open grassland has 324± 43 mm in total annual ET, including ~67%
water lost via grass transpiration and ~32% via surface evaporation.

Long-term flux records are helpful for reducing uncertainties in the
performances of these models. Overall, the LTRI and QRMS models
performed reasonably for savanna ecosystems, even though the models
take different working principles. However, the QRMS-Q80 works
better for oak canopy, while the QRMS-reg works better for grasses.
Also, the LTRI model is designed for large-scale estimation, expecting
high uncertainties in the results of partitioning understory ET. For local

scales, the QRMS model may perform better than the LTRI model but
need extra cautions in setting up a reasonable percentile threshold
when the model is to be applied for woodlands or forests.

While long-term eddy-covariance measurements are continuously
accumulated and becoming more accessible, the two models have the
potential for partitioning evapotranspiration and comparing their re-
sults across the global flux data network. Such cross-site comparison
studies would provide more reliable, process-based constraints for re-
mote sensing and large-scale modeling efforts.
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