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Abstract Climate extremes such as drought and heat waves can cause substantial reductions in terrestrial
carbon uptake. Advancing projections of the carbon uptake response to future climate extremes depends
on (1) identifying mechanistic links between the carbon cycle and atmospheric drivers, (2) detecting and
attributing uptake changes, and (3) evaluating models of land response and atmospheric forcing. Here, we
combine model simulations, remote sensing products, and ground observations to investigate the impact of
climate variability on carbon uptake in the Texas-northern Mexico region. Specifically, we (1) examine the
relationship between drought, carbon uptake, and variability of El Niño–Southern Oscillation (ENSO) and the
North Atlantic Oscillation (NAO) using the Joint UK Land-Environment Simulator (JULES) biosphere simulations
from 1950–2012, (2) quantify changes in carbon uptake during record drought conditions in 2011, and (3)
evaluate JULES carbon uptake and soil moisture in 2011 using observations from remote sensing and a network
of flux towers in the region. Long-term simulations reveal systematic decreases in regional-scale carbon uptake
during negative phases of ENSO and NAO, including amplified reductions of gross primary production (GPP)
(�0.42± 0.18 PgC yr�1) and net ecosystem production (NEP) (�0.14± 0.11 PgCyr�1) during strong La Niña
years. The 2011 megadrought caused some of the largest declines of GPP (�0.50 Pg C yr�1) and NEP
(�0.23 Pg C yr�1) in our simulations. In 2011, consistent declines were found in observations, including
high correlation of GPP and surface soil moisture (r = 0.82 ± 0.23, p = 0.012) in remote sensing-based
products. These results suggest a large-scale response of carbon uptake to ENSO and NAO, and highlight a
need to improve model predictions of ENSO and NAO in order to improve predictions of future impacts on
the carbon cycle and the associated feedbacks to climate change.

1. Introduction

Terrestrial ecosystem feedbacks to environmental changes result in global carbon sinks that are thought to
mitigate greenhouse gas warming, but climate extremes such as drought and heat waves can cause subs-
tantial changes in regional carbon stocks that could release CO2 to the atmosphere and potentially negate
current and future sinks [Reichstein et al., 2013; Schwalm et al., 2012; Zscheischler, 2014a]. In North America,
which represents a net sink of CO2 in the present climate [Xiao et al., 2011; King et al., 2015], variations in
carbon uptake are linked to changes in precipitation that affect ecosystem productivity [Knapp et al., 2002;
Xiao et al., 2011; Schwalm et al., 2011]. In the western and Great Plains regions, declines in carbon sinks are
observed during drought associated with drying and loss of productivity in croplands and grasslands
[Craine et al., 2012; Schwalm et al., 2012; Rajan et al., 2013]. Droughts over the Great Plains, a key agricultural
sector in the United States with a total market value of about $92 billion [U.S. Department of Agriculture,
2014], represent a threat to food security and energy production [Smith and Katz, 2013]. In the southern
Great Plains region, which includes northern Mexico and Texas (denoted the TexMex domain, Figure 1,
(106°W–93°W, 26°N–38°N), including Texas and surrounding grid cells), dramatic increases in the intensity
and frequency of droughts are expected over the next century [Seneviratne et al., 2012; Collins et al., 2013].
Thus, projected drying will add stress to already limited water resources, affect management choices related
to irrigation, municipal use, and energy generation [Colby and Tanimoto, 2011; Shafer et al., 2014], and
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potentially exacerbate climate-carbon
feedbacks [Collins et al., 2013]. To
obtain more reliable estimates of the
sign and magnitude of future carbon
cycle feedbacks and to improve
drought preparedness in this critical
agricultural region, improved quan-
tification of the relationship between
carbon uptake and drought in TexMex
within the present climate is needed.

Historically, climate models have failed
to predict record droughts in TexMex
[Hoerling et al., 2013; Seager et al.,
2014]. It has been hypothesized that
anomalies in atmospheric circulation
patterns over the Great Plains related
to ocean thermal forcing, atmospheric
internal variability, and land-atmosphere
feedbacks play important and underre-
presented roles [Seager et al., 2014].
The most commonly accepted cause of
drought in TexMex has been cold tropi-
cal Pacific sea surface temperature
(SST) anomalies associated with La Niña
patterns, which can coalesce with other
SST anomalies in the Atlantic and
Indian Oceans and lead to extreme
droughts [Nigam et al., 2011, and refer-
ences therein]. La Niñas are character-
ized by anticyclonic high anomalies in
theNorth Pacific thatmergewith a zonal
band of high pressure across North
America into the mid-Atlantic Ocean
[Seager et al., 2014]. This typically leads
to dry conditions in southern parts of
North America, especially along the
Gulf Coast, with peak drying in winter,
weak drying in spring, and a return to
normal conditions in summer.

However, La Niñas do not necessarily
lead to summer droughts, and some
severe to extreme droughts occurred
without clear forcing from SST anoma-
lies [e.g., Namias, 1991]. These droughts
have been often attributed to atmo-
spheric internal variability including
negative winter phases of the North

Atlantic Oscillation (NAO) [Hoerling et al., 2013; Seager et al., 2014], which help initiate or intensify droughts,
and land surface feedbacks [e.g.,Myoung and Nielsen-Gammon, 2010, and references therein], which can sustain
droughts. The NAO is characterized by positive geopotential height anomalies over the Icelandic region and
below normal heights in the western Atlantic and across eastern and southern North America [Hurrell and
Deser, 2009]. The resulting decreased pressure gradient reduces the westerlies and causes high-latitude block-
ing of storm tracks, which drives advection of cold and dry air from Alaska and Canada into the United States

Figure 1. Maps of January–June averaged precipitation (PPT) anomalies for
the period 1950–2012 for difference ENSO and NAO conditions, including
(a) ENSO< 0, (b) NAO< 0, and (c) ENSO/NAO< 0. These conditions are
classified using the ENSO and NAO winter average. Blue (red) shading
represents negative (positive) anomaly. Stippling in Figure 1c represents
points that exceed 2σ (standard deviation) based on bootstrapping
methods (sample size = 5000). Rectangle denotes Texas-northern Mexico
(TexMex) region of study.
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and can lead to negative precipitation anomalies in TexMex. Through land-atmosphere feedbacks, low soil
moisture availability and evapotranspiration (ET) can feed back onto the atmospheric processes controlling
clouds, rainfall, and radiation, which can reinforce drying [Seneviratne et al., 2010]. Reduced stomatal conduc-
tance through increased vapor pressure deficit can lead to additional reductions of ET rates across the land sur-
face [Sellers et al., 1997]. Modeling the impact of these processes on drought persistence relies fundamentally
on the ability to represent soil moisture-vegetation interactions.

In 2011, TexMex experienced one of the worst droughts on record (denoted as TMD11), with severe drought
conditions lasting from winter 2010-2011 through fall 2011 and with record low precipitation (40% of average)
during the 2011 water year [Long et al., 2013]. Although short relative to the record-setting multiyear droughts
of the 1930s and 1950s, TMD11 was the worst drought period in the region since the mid-1950s [LeComte,
2012]. Abnormally dry conditions persisted from winter through summer, with record warm summer
temperatures throughout TexMex [Hoerling et al., 2013; Seager et al., 2014].

The abnormally dry conditions during peak rainy months in late winter/early spring cut off a critical supply of
soil moisture for plants and agriculture during the summer growing season [Long et al., 2013], leading to $7.6
billion in agricultural losses [Fannin, 2012] and conversion of a pasture site in northern Texas from a CO2 sink
in 2012 to a source in 2013 driven by declines in gross primary production (GPP) [Rajan et al., 2013].
Semiempirical evidence suggests that drought-induced GPP loss was widespread and significant, likely
impacting the entire TexMex region and representing one of the largest negative spatiotemporal GPP
anomalies over the last 30 years in North America [Zscheischler et al., 2014a].

During typical TexMex droughts the primary forcing mechanisms of La Niña, internal atmospheric variability,
and land surface feedbacks work separately. TMD11, however, was likely driven by a combination of all three,
with drought onset in winter and spring forced initially by La Niña, and then sustained and likely exacerbated
into summer by atmospheric moisture divergence across the TexMex region related to the negative phase
of the NAO in winter 2010-2011 and land surface feedbacks [Hoerling et al., 2013; Seager et al., 2014]. TMD11
was well represented inmodels constrained by observed SST anomalies and atmospheric observational reanalysis
but poorly represented in coupled climate models [Hoerling et al., 2013].

These studies imply a regional-scale (~1000 km’s) sensitivity of semiarid ecosystem productivity across the
TexMex region to drought-induced water stress associated with atmospheric circulation anomalies during
negative phases of El Niño–Southern Oscillation (ENSO) and the NAO. This link has been observed at small
scales in the case of TMD11, but it is unclear whether there is a systematic regional-scale response of net car-
bon uptake in TexMex to variations of ENSO and the NAO.

Here we examine the regional-scale carbon uptake response of TexMex region to La Niña and negative NAO
events from 1950 to 2012. We first examine the relationship between drought, carbon uptake, and variability
of ENSO and the NAO using simulations of the Joint UK Land-Environment Simulator (JULES) terrestrial biosphere
model from 1950 to 2012. This will help determine the sensitivity of TexMex carbon uptake to variations of La
Niña and the NAO and provide a climatological context to evaluate the significance of the extreme 2011 drought
event. Due to limitations in the predictability of ENSO and the NAO in free-running climate models, JULES
simulations are forced by observed climate to ensure proper atmospheric forcing and attribution of carbon
uptake drivers. We then compare JULES predictions of carbon uptake and soil moisture to observations from flux
towers and satellites during TMD11. Thus, TMD11 serves as a case study to evaluate JULES and to determine the
predictability of the impact of meteorological drought on modeled soil moisture and carbon uptake.

We ask four main questions: (1) Are large-scale changes in TexMex carbon uptake linked fundamentally to
water deficits associated with negative phases of ENSO and the NAO? And (2) are these relationships robust
over the climatological record? (3) Are carbon uptake changes during TMD11 present and detectable with
remote sensing techniques and consistent with in situ measurements from flux towers? (4) How well does
JULES predict this impact?

2. Methods
2.1. Approach

We first examine the relationship between La Niña, the NAO, drought, and carbon uptake using JULES simula-
tions from 1950 to 2012, which provides a long time scale over which we seek to capture a large sample size of
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climate events and establish potentially statistically meaningful relationships. JULES predictions of soil moisture
and carbon uptake anomalies during TMD11 are then evaluated against a suite of satellite and flux tower obser-
vations. Soil moisture anomalies are compared tomeasurements of total column and surface soil moisture from
the Gravity Recovery and Climate Experiment (GRACE) and Soil Moisture and Ocean Salinity (SMOS) satellites,
respectively. GPP and net ecosystem production (NEP) are evaluated at local scale against eddy covariance flux
tower sites. GPP is also evaluated regionally using observations of canopy photosynthesis derived from satellite
retrievals of solar-induced chlorophyll fluorescence (SIF) from the Greenhouse gases Observing SATellite
(GOSAT). All model and observation time series are based on the average of pixels within the TexMex domain
(106°W–93°W, 26°N–38°N).

2.2. Observations
2.2.1. Regional Carbon Uptake
Simulations of regional GPP anomalies are evaluated against three remote sensing-based GPP estimates. The
first, denoted GOPT, is derived from an ensemble of terrestrial biosphere models constrained by GOSAT SIF
measurements. The second, denoted MOD17 (Moderate Resolution Imaging Spectroradiometer (MODIS)
MOD17A2 GPP product), is derived from a light use efficiency model constrained by MODIS canopy
greenness observations. The third, denoted as Max Planck Institute (MPI), is derived from a flux tower data
based upscaling approach using the Max Planck Institute for Biogeochemistry (MPI-BGC) model. These three
semiempirical GPP estimates are described in order below.

SIF is visible solar energy reemitted at longer wavelengths from the chlorophyll of assimilating leaves,
and thus originates from the core complexes of the photosynthetic machinery. Global measurements
of SIF have opened up the possibility to estimate the rate of planetary photosynthesis at increasing spatial
resolution (down to ~10.5 km diameter in GOSAT), providing direct seasonal constraints on global GPP
[Frankenberg et al., 2011]. Near global retrievals of SIF from GOSAT correlate strongly (r2 = 0.80) at global
annual scale with flux measurement-based GPP extrapolated globally from the MPI approach
[Frankenberg et al., 2011; Beer et al., 2010; Jung et al., 2011]. There are two key advantages for using SIF
in the present study.

1. SIF is directly proportional to absorbed photosynthetically active radiation seen by chlorophyll, rather
than the nonphotosynthesizing parts of the plant and/or soil/surfaces. Spaceborne SIF measurements
are, therefore, sensitive only to variations in the rate of photosynthesis rather than changes in reflectance
not associated with vegetation. This is an important benefit in sparsely vegetated semiarid regions such as
TexMex.

2. SIF can be used to estimate actual photosynthesis rather than potential photosynthesis and can detect
plant physiological effects and plant productivity changes linked to water limitation and temperature
stress [Daumard et al., 2010; Lee et al., 2013]. SIF remote sensing data, therefore, offers crucial insight into
regional impacts of drought events such as TMD11.

For GOPT, we use a Bayesian analysis framework to estimate monthly averaged GPP at 5° × 4° grid spacing
that optimally accounts for uncertainties in predictions of GPP from terrestrial biosphere models, estimates
of GPP inferred from satellite observations of midday SIF, and relationships between SIF and GPP [Parazoo
et al., 2014]. Here prior GPP is predicted from 1950 to 2012 using JULES (see below). Uncertainty is
estimated using the spread of eight biosphere models from the TRENDY model intercomparison project
over the period 2000–2009 (http://dgvm.ceh.ac.uk/node/9) [Sitch et al., 2015]. Midday SIF is taken from
GOSAT from 2009 to 2012 and scaled to monthly GPP using the empirical linear relationship with MPI
GPP with careful accounting for uncertainties in SIF measurements and the MPI approach [Frankenberg
et al., 2011; Parazoo et al., 2014].

We note that while this method provides an uncertainty range based on model climatology, the limited
period of available model data means we are unable to account for possible changes in uncertainty during
the 2011 drought. However, this methodology does provide estimates of posterior uncertainty based on
assimilation of year specific satellite SIF data, leading to significant uncertainty reductions (exceeding 50%
in many cases) in regions where observational coverage and prior uncertainty are high. The combination
of GOPT and uncertainty in this study provides a regional semiempirical GPP constraint, helps to quantify
the significance of regional GPP changes, and provides a range of uncertainty for determining the signifi-
cance of predicted GPP.
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Although GOPT is constrained by critical satellite SIF measurements, it relies fundamentally on GPP output
from terrestrial biosphere models, which in this study is JULES. Consequently, GOPT cannot be used as an
independent model evaluation product for regional GPP. For this, we rely on data sets from the MODIS
MOD17A2 GPP product (MOD17) [Running et al., 2004; Myneni et al., 2007] and from the Biogeochemical
Model-Data Integration Group of the Max Planck Institute for Biogeochemistry (MPI) [Beer et al., 2010; Jung
et al., 2011]. Both the MOD17 and MPI GPP data sets rely on satellite-derived estimates of the fraction of
absorbed photosynthetically active radiation (FAPAR) to model GPP. MODIS GPP is based on the combination
of tabulated light use efficiency withmeteorological parameters and FAPAR, whereas MPI GPP is produced by
the global upscaling of flux tower measurements of CO2, water, and energy fluxes.
2.2.2. Regional Soil Moisture
Changes in soil water from 2009 to 2012 are derived from GRACE [Swenson and Wahr, 2006; Landerer and
Swenson, 2012] and SMOS. GRACE, which consists of two satellites that monitor distances between each
other to track temporal variation in Earth’s gravity field [Tapley et al., 2004], provides global estimates of
satellite-derived changes in liquid water equivalent (LWE) thickness (units of cm’s) and therefore acts
as a remote sensing drought indicator [e.g., Long et al., 2013]. We use 2009–2012 LWE from Release 05
GRACE-Tellus, which is provided at monthly resolution on a global 1° × 1° grid (data access from http://
catds.ifremer.fr/Products/Products-access).

SMOS is a passive microwave interferometer, using the band at 1.4 GHz [Kerr et al., 2010]. It provides surface
soil moisture (top 5 cm) at 6 A.M. and 6 P.M. and covers the entire Earth surface within 3 days. The satellite was
launched in November 2009, and data are available since 2010. SMOS soil moisture from 2010 to 2011 is
taken from the reprocessed Version 1 Level 3 Centre Aval de Traitement des Données (CATDS) aggregated
monthly product on a 25 km×25 km equal area scalable Earth grid, using the average of ascending and des-
cending orbits [Jacquette et al., 2010] (data access from www.catds.fr/sipad).
2.2.3. Flux Tower Measurements
We used direct measurements of half-hourly net ecosystem productivity (NEP) from five eddy covariance flux
tower sites in New Mexico (New Mexico Elevation Gradient) and Texas (Table 1) to quantify the biosphere-
atmosphere CO2 exchange. GPP was estimated from measured nighttime NEP (total ecosystem respiration,
TER) with extrapolated temperature response functions. These data were collected and processed as
described in Anderson-Teixera et al. [2011], gap-filled using meteorological data, and aggregated to monthly
sums of CO2 exchange.

2.3. Biosphere Model Simulations

JULES (the Joint UK Land-Environment Simulator) is the land surface model of the Hadley Centre climate
model [Cox et al., 2000; Cox, 2001; Essery et al., 2003]. It simulates fluxes of carbon, water, and energy on nine
tiles, including five plant functional types (broadleaf tree, needleleaf tree, C3 and C4 grasses, and shrub). The
biophysics is based on Collatz et al. [1991, 1992] for C3 and C4 photosynthesis. Potential (nonwater stressed)
photosynthesis is calculated as a smoothed minimum of three rates: rubisco limited, light limited, and either
rate of transport of photosynthetic products (for C3) or phosphoenolpyruvic acid carboxylase limitation (for
C4). The JULES canopy has 10 layers, with the leaf area index for each being divided into sunlit and shaded
fractions. A two-stream approximation of radiation interception [Sellers, 1985] is used to calculate spectral
albedos and absorbed incoming radiation for each layer, allowing for penetration of direct-beam sunflecks
into the canopy. A soil moisture stress factor directly reduces the potential photosynthesis rate. Leaf-level
net photosynthesis is related to stomatal conductance based on a CO2 diffusion equation and the leaf

Table 1. Site Characteristics of Eddy Covariance Flux Towersa

Site Name Site ID IGBP Latitude Longitude Elevation Site Years

Freeman Ranch Mesquite Juniper US-FR2 WSA 29.9495 �97.9962 272 2005–2012
HLC Pinyon Juniper Woodland US-Mpj OSH 34.4384 �106.2377 2138 2008–2012
Tablelands Juniper Savanna US-Wjs OSH 34.4255 �105.8615 1926 2008–2012
Valles Caldera Mixed Conifer US-Vcm ENF 35.8884 �106.5321 3003 2007–2012
Valles Caldera Ponderosa Pine US-Vcp ENF 35.8624 �106.5974 2542 2007–2012

aThe IGBP land use classes correspond to woody savanna, open shrubland (OSH), and evergreen needleleaf forest
(ENF). Elevation is denoted as meter asl.
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humidity deficit [Jacobs, 1994; Cox et al., 1998]. Within JULES, Top-down Representation of Interactive Foliage
and Flora Including Dynamics (TRIFFID) predicts fractional coverage of each plant functional type (PFT), soil
carbon, vegetation carbon, and leaf area index. For each PFT, the change in fractional coverage is based on
the net carbon available to it and a Lotka-Volterra competition scheme [Cox, 2001]. Soil carbon is modeled
in four pools, and respiration is based on the RothC model. Full model details are available in Clark et al.
[2011] and Best et al. [2011].

JULES is forced over the period 1860–2013 at 1.875° × 1.25° using a factorial set of sensitivity simulations.
Here we use monthly mean GPP output from “S3” simulations forced with changing CO2, land use
change, and climate information from the Climatic Research Unit-National Centers for Environmental
Prediction (CRU-NCEP) data set, representing the combination of CRU TS.3.2 0.5° × 0.5° monthly
climatology and NCEP reanalysis 2.5° × 2.5° 6-hourly data (ftp://nacp.ornl.gov/synthesis/2009/frescati/
model_driver/cru_ncep/analysis/readme.htm).

We are interested in anomalies of climate and ecosystem function during a subset of negative ENSO and NAO
years relative to 1950–2012 climatology. To calculate anomalies over this period, data are deseasonalized
(mean seasonal average removed), averaged temporally over the period of interest, and then detrended
using a forward and reverse low-pass frequency filter of order 5 and cutoff frequency 0.15. After deseasona-
lizing and detrending, variables are either averaged over growing season months of April to September to
reflect the peak period of photosynthetic activity or January to June to reflect the period of peak precipitation
deficits in La Niña years.

We test for significance of anomalies using a bootstrap approach [e.g., Efron, 1979] in which we create a sam-
ple of 5000 random samples each of lengthM subsampled from the simulated time series of length N. For this
study, N= 63, representing the number of years from 1950 to 2012, andM varies for different composite sub-
samples. We then test for 90% significance by searching for composite averages that either fall above the
highest 10 percentile level (for positive anomalies) or below the lowest 10 percentile level (for negative
anomalies) of the bootstrap average and denote significance graphically with symbol (circles for time series
and crosses for maps). We note that significance estimates were recalculated using 1000 random samples
with nearly identical results, suggesting that our choice of 5000 samples is considered large enough for
significance testing.

2.4. Semiarid Ecosystems in TexMex

We quantify semiarid and individual PFT contribution to TexMex carbon budgets during the 2011 drought
using PFT classifications from (1) JULES and (2) the International Geosphere-Biosphere Programme (IGBP).
JULES consists of five main vegetation PFTs including needleleaf forests (1%), broadleaf forests (2%), C3 grass
(25%), C4 grass (33%), shrublands (2%), and other nonvegetated tiles including 36% bare soil. Croplands are
not included in this model version. For IGBP, we use a modified classification following Frankenberg et al.
[2011] consisting of needleleaf (<1%), evergreen broadleaf (<1%), deciduous broadleaf (5%), shrubland
(31%), savannah (9%), grassland (38%), cropland (11%), and other nonvegetated tiles (5%). Based on these
classifications, we estimate that semiarid ecosystems (shrublands, savannah, grassland, cropland, and bare
soil) represent 96% and 89% of TexMex vegetation, respectively. PFT contributions to GPP loss in semiempi-
rical (GOPT) and model (JULES) estimates are discussed in section 3.4.

2.5. Climate Indices for La Niña and the NAO

ENSO conditions are defined based on SST variations and their persistence along the equatorial Pacific Ocean
and determined from the Oceanic Niña Index (ONI), which is based on a 3month running mean of SST
anomalies in the Niño-3.4 region (5°S–5°N, 120°W–170°W) calculated by the National Oceanic and
Space Administration (NOAA) climate prediction center (CPC) (http://www.cpc.ncep.noaa.gov/products/
analysis_monitoring/ensostuff/ensoyears.shtml) [L’Heureux et al., 2012]. NOAA defines El Niño and La
Niña episodes based on a monthly ONI threshold of ± 0.5°C; in this study, we define these episodes
based on a winter average (December-January-February, or DJF) ONI threshold of ± 0.0°C. We refer to
DJF ONI averages as ENSO and El Niño/La Niña episodes as ENSO> 0 and ENSO< 0, respectively.
ENSO episodes over the period 1950–2012 are shown in Figure 2a.

The NAO index consists of a north-south dipole of surface pressure anomalies, with one centered over
Greenland and the other of opposite sign spanning the North Atlantic from 35°N to 40°N [Barnston and
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Livezey, 1987]. Here we use the monthly
tabulated NAO index from 1950 to
2012 calculated by the CPC and based
on monthly standardized 500mb
height anomalies obtained from the
NCEP/National Center for Atmospheric
Research reanalysis data set (http://
www.cpc.ncep.noaa.gov/products/pre-
cip/CWlink/pna/nao.shtml). The NAO,
unlike ENSO, is normalized using the
1981–2010 base period. Consequently,
the NAO DJF average shows significant
decadal trends resembling a sinusoid
(Figure 2b), with low values in the
1960s and high values in the late
1980s/early 1990s. To examine the
sensitivity of interannual variability in
ecosystem function to interannual
variability in winter NAO, we remove
the decadal harmonic using a high-pass
filter. Detrended values are shown in
Figure 2c and will be used for the
remainder of this study. However, we
repeat this analysis with the decadal
trend retained to investigate sensitivity
of carbon uptake and ET to persistent
decadal NAO effects.

Note that the ENSO/NAO indices are
the CPC values rather than the indices
computed using the CRU-NCEP fields;
however, this is not expected to
influence the conclusions of this study
since CRU-NCEP fields are based on

assimilated meteorological observations. Unless stated otherwise, all results are based on negative
index winters (ENSO< 0 and NAO< 0) and denoted throughout the paper as ENSO/NAO< 0 years.
ENSO/NAO< 0 years, circled in Figures 2a and 2c, occur 22% of the time, or 14 out of 63 years (see Table 2),
with at least two events per decade over the 63year record.

3. Results and Discussion
3.1. Changes in Carbon Uptake During Negative Phases of ENSO and the NAO

Analysis of CRU-NCEP meteorology from January to June over the period 1950–2012 show strong negative
precipitation (PPT) anomalies during La Niña years (ENSO< 0) throughout the southern portion of North
America, including TexMex, the Midwest, and most strongly along the Gulf Coast (Figure 1a), with most grid
points exceeding 90% significance (estimated from a bootstrap test and indicated by crosses). Negative
anomalies also occur in NAO< 0 years (Figure 1b) but are more regional, limited primarily to eastern Texas
and extending north-northeast to the Great Lakes region. However, negative anomalies are strongly ampli-
fied in TexMex during overlapping negative phases of ENSO and the NAO (ENSO/NAO< 0 years, Figure 1c),
leading to a 10% deviation from climatology in winter and spring when PPT is near its annual minimum
(Figure 3a). While negative anomalies of monthly area integrated PPT are generally not significant during this
period (with the exception of December and March as indicated by circles in Figure 3), grid-scale time inte-
grated values exceed 90% significance throughout TexMex in ENSO/NAO< 0 years (crosses in Figure 1c).
These results suggest that La Niña drives precipitation decreases throughout southern North America,

Figure 2. Time series of winter (DJF) climate modes from 1950 to 2012,
including (a) detrended ENSO, (b) NAO, and (c) detrended NAO. Years
when detrended ENSO< 0 and detrended NAO< 0 are represented by
black circles in Figures 2a and 2c. Circles in Figure 2b represent years with
trended NAO< 0. Red circles are 2011.
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Table 2. Anomalies of Enviroclimatic and Ecosystem Function Variables for Different ENSO and NAO Cases, Selected According to Deviation From Zero (Row 1)a

Filtering Criteria ENSO< 0 NAO< 0 ENSO< 0 NAO<�1σ ENSO<�1σ NAO< 0
ENSO<�1σ NAO< 0

(Excluding 2011) ENSO<�1σ NAO<�1σ

Years retained (out of 63) 14 6 3 2 1
PPT Feb–Jul (mm6 h�1) �0.095 ± 0.32 �0.13 ± 0.38 �0.48 ± 0.14 �0.41 ± 0.092 �0.62
GPP Jan–Dec (Pg C yr�1) �0.069 ± 0.29 �0.16 ± 0.29 �0.42 ± 0.18 �0.37 ± 0.23 �0.50
TER Jan–Dec (Pg C yr�1) �0.053 ± 0.20 �0.11 ± 0.17 �0.28 ± 0.080 �0.28 ± 0.11 �0.27
NEP Jan–Dec (Pg C yr�1) �0.017 ± 0.11 �0.047 ± 0.14 �0.14 ± 0.11 �0.09 ± 0.12 �0.23
ET Apr–Sep (kgm�2 s�1) �0.055 ± 0.30 �0.077 ± 0.35 �0.46 ± 0.23 �0.37 ± 0.25 �0.64
SoilW Apr–Sep (kgm�2) �6.2 ± 21.6 �10.6 ± 23.1 �30.7 ± 7.2 �33.32 ± 7.9 �25.5
SWdwn Feb–Jul (Wm�2) 1.16 ± 2.17 1.11 ± 2.89 4.14 ± 1.18 3.46 ± 0.04 5.5
Ts Apr–Sep (K) 0.15 ± 0.66 0.25 ± 0.79 0.67 ± 0.46 0.50 ± 0.51 1.0
LAI Apr–Sep (m2m�2) �0.02 ± 0.09 �0.023 ± 0.09 �0.12 ± 0.03 �0.14 ± 0.03 �0.085

aStatistics include number of years for each case (row 2) and average ± standard deviation of anomalies (rows 3–8). Column 1 shows variable of interest, aver-
aging period, and units. Most fields are averaged during the growing season (Apr–Sep) except PPT and SWdwn (Feb–Jul) and GPP and NEP (Jan–Dec). Carbon
fluxes (GPP, TER, and NEP) are annual sums.

Figure 3. Seasonal averages of (a) precipitation (PPT), (b) gross primary production (GPP), (c) net ecosystem production
(NEP, positive represents carbon uptake from atmosphere), and (d) evapotranspiration (ET) averaged across the TexMex
water year (October–September) for a range of ENSO and NAO conditions from 1950 to 2012. Averages include all years
(grey), years with ENSO< 0 and NAO< 0 (black), years with ENSO< 0 and NAO<�1σ (blue), years with ENSO<�1σ and
NAO< 0 (cyan), and years with ENSO<�1σ and NAO<�1σ (red). GPP, NEP, and ET are computed from JULES. Grey
dashed line represents the lower 90% significance threshold, estimated from bootstrapping methods (sample size = 5000).
Circles represent months that exceed 90% significance during years in which ENSO< 0 and NAO< 0.
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including TexMex, with amplification of precipitation decreases in TexMex during concurrent phases of nega-
tive winter NAO.

Model results show corresponding declines of carbon flux (GPP and NEP) and ET in winter, spring, and
summer in ENSO/NAO< 0 years (Figures 3b–3d). Negative GPP anomalies exceed 90% significance at the
beginning of the growing season (April and May) and are the primary driver of reduced carbon uptake by
NEP (Figure 3c), which is subject to the strongest declines during winter (stronger source) and spring (weaker
sink). Negative anomalies of TER, representing ~75% of GPP, reduce the overall magnitude of NEP anomalies.
This simultaneous decrease in GPP and TER during drought including stronger GPP reductions is consistent
with model and observational studies [Law et al., 2001; Schwalm et al., 2010; Zscheischler et al., 2014b]. ET is
composed primarily of soil evaporation in this region (~80% of total ET); and hence, negative anomalies of
ET are driven mainly by reductions in evaporation rather than plant transpiration. GPP, NEP, and ET
reductions in ENSO/NAO< 0 years are generally much weaker toward the end of the growing season as
precipitation returns to normal.

Anomalies of spring PPT and growing season carbon flux and ET are weakly (correlation ranges from 0.16 to
0.22), but positively, correlated with ENSO (grey points in Figure 4) with net negative anomalies during
ENSO< 0 years and positive anomalies for ENSO> 0 years. However, high standard error and weak slope
of regression indicate that ENSO by itself does not explain a significant amount of PPT and carbon flux

Figure 4. Scatterplots of monthly anomalies of JULES model predictions against ENSO, including (a) precipitation (PPT),
(b) gross primary production (GPP), (c) net ecosystem production (NEP), and (d) evapotranspiration (ET) against ENSO.
Grey represents all years and black years where ENSO/NAO< 0. Red diamonds represent years with ENSO<�1σ and
NAO<�1σ. Cyan diamonds are years with ENSO<�1σ and NAO< 0 (includes red diamond). Solid lines are linear
regressions, and dashed the 95% confidence bounds. Correlation (r) and p value (p) are color coded for each regression.
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variability in TexMex. These relationships are much stronger during ENSO/NAO< 0 years (black points in
Figure 4), including a factor of 8–10 higher regression slopes and a factor of 3–4 higher correlation (correlation
ranges from 0.53 to 0.64), and thus the amount of variance explained by ENSO is much higher when indices for
ENSO and the NAO are both negative.

Similar results are obtained for ENSO/NAO< 0 years when repeating the analysis with decadal NAO trends
retained (not shown) including the positive correlation of GPP and ET with ENSO (r= 0.43 ± 0.20 (p= 0.11)
and 0.38 ± 0.21 (p= 0.11), respectively). The model relationships are degraded, however, suggesting that
year-to-year variability in climate plays a strong role in ecosystem function in TexMex during this period.
More broadly, these results strongly support a mechanistic link between atmospheric circulation patterns
and regional carbon cycles across TexMex during overlapping negative phases of ENSO (La Niña) and the
NAO in which spring precipitation deficits are correlated with reductions of growing season carbon
uptake and ET.

3.2. Drivers of Reduced Carbon Uptake During Concurrent Negative Phases of ENSO and the NAO

Perturbations to ecosystem function are forced by a combination of environmental impacts and changes to
plant structure. For example, field experiments at a semiarid pasture site in Texas provide evidence of an
immediate physiological response of GPP to soil moisture stress in 2011 related to stomatal closure and
reduced photosynthesis [Rajan et al., 2013]. Texas incurred $7.6 billion in agricultural losses [Fannin, 2012],
suggesting large-scale decline in biomass in 2011, which is related to losses in GPP and NEP. We investigate
climate (soil moisture and temperature) and plant structure (leaf area index) effects in JULES using
correlation statistics.

JULES shows a weak positive relationship of ENSO with total soil moisture anomalies (SoilW, r=0.35±0.12,
p=0.036) and weak negative relationships with downward shortwave radiation (SWdwn, r=�0.35± 0.12,
p=0.012), and air temperature (Ts, r=�0.12± 0.13, p=0.054) over the period 1950–2012. These sensitivities
are strongly enhanced, however, during ENSO/NAO< 0 years (SoilW: r=0.56±0.24, p=0.01; SWdwn:
r=�0.65± 0.22, p=0.0036; Ts: r=�0.52± 0.25, p=0.51). Moreover, anomalies of SoilW and GPP are well corre-
lated (r=0.94±0.10, p=0.0038), consistent with observational evidence in this and previous studies. Negative
soil moisture anomalies also explain our findings of reduced ET driven by soil evaporation.

We note that negative precipitation anomalies peak from November through May, while GPP anomalies peak
later into the growing season (Figure 4a). Enhanced correlation of PPT with GPP and SoilW at a time lag of
2months (r=0.93 ± 0.11 (p= 0.000001) and 0.83 ± 0.16 (p= 0.0002), respectively) compared to zero time lag
(r= 0.65 ± 0.22 (p=0.014) and 0.45 ± 0.26 (p=0.11)) indicates a delayed response of soil moisture and plant
physiology to precipitation deficits, suggesting that winter and spring precipitation anomalies produce car-
bon cycle feedbacks well into summer (hence, the choice of the February to July averaging period for PPT in
Figure 4a and Table 2).

JULES shows a significant positive correlation of leaf area index (LAI) with ENSO in ENSO/NAO< 0 years
(r= 0.72 ± 0.20, p= 0.12) and strong sensitivity of LAI to ENSO intensity (slope= 0.19m2m�2/ENSO index,
factor of 10 stronger than slope of all years combined). Despite high correlation of JULES LAI and ENSO, total
LAI loss in ENSO/NAO< 0 years is small compared to average LAI in this region (<5%) and is therefore
unlikely to have a significant impact on simulated GPP.

Typically, JULES GPP is very closely balanced by TER in TexMex such that annual NEP is close to zero
(�0.004 Pg C yr�1) and TexMex is carbon neutral. However, we have shown that JULES GPP anomalies
(�0.069 ± 0.29 PgC yr�1) exceed TER anomalies (�0.053 ± 0.20 Pg C yr�1) during ENSO/NAO< 0 years lead-
ing to reduced NEP and converting the region into a slightly stronger (though still insignificant) carbon
source (�0.017 ± 0.20 Pg C yr�1). TER is driven by a combination of autotrophic respiration (RA) during plant
growth and maintenance and heterotrophic respiration (RH) by microbial decomposition of soil carbon. In
JULES, both terms are sensitive primarily to changes in soil moisture and soil temperature, with high RH
sensitivity to soil moisture in dry soils well reproducing observed responses [Clark et al., 2011]. Low soil moist-
ure in Texas in 2011 caused a decrease in RA nearly proportional to GPP (through photosynthesis), but water
limitation effects on RH were partly balanced by high soil temperature, driving an increase in RH and net
decrease of NEP [Rajan et al., 2013]. However, during typical ENSO/NAO< 0 years, JULES shows negative
anomalies of both terms, with 65% of the anomaly driven by RA (�0.034 Pg C yr�1) and 35% by RH
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(�0.018 Pg C yr�1). Given the very small change in JULES Ts during these years (+0.15 K), it is likely that soil
moisture deficits drive decreased RA and RH during ENSO/NAO< 0 years and heat stress effects are small.

The above analysis suggests that decreases in carbon uptake and ET are driven by a combination of environ-
mental stress and degradation of plant biomass, and that these responses are amplified with increasing La
Niña strength during ENSO/NAO< 0 years. There is, however, significant variability across the 14 identified
events (see Figure 2), which precludes a potential systematic environmental and ecosystem response to spring
precipitation deficits during these periods. For example, if we classify a “negative response” as enhanced envir-
onmental stress (negative anomalies of PPT and SoilW and positive anomalies of SWdwn and Ts) and reduced
ecosystem function (negative anomalies of carbon uptake, ET, and LAI) and a “positive response” as the reverse,
we find in general a negative response during strong La Niña years and a positive response duringweak La Niña
years (Figure 4). The average of anomalies and corresponding variability for each of these fields during
ENSO/NAO< 0 is shown numerically in Table 2 (column 2). In all cases, variability exceeds the anomaly; and
hence, these anomalies are not considered significant. The implication is that changes in ecosystem function
are not predictable given only information about the sign of ENSO andNAOphases. In order to identify a poten-
tially systematic ecosystem response to atmospheric circulation anomalies associated with internal atmo-
spheric variability, further filtering of ENSO and NAO conditions is needed.

3.3. Enhanced Carbon Uptake Reduction With Increasing Intensity of ENSO and the NAO

We investigate these relationships further by sorting ENSO/NAO< 0 years based on ENSO and the NAO
strength, since these events can affect precipitation in TexMex independent of each other (see Figure 2).
We classify these new conditions using 1σ deviations of ENSO and NAO from zero. Sorting by negative
ENSO years (ENSO< 0) and strongly negative NAO years (NAO<�1σ, σ = 0.68) reduces the total number
of events from 14 to 6 (1955, 1963, 1979, 1985, 1996, and 2011; Table 2, column 3). This increases the magni-
tude of annual anomalies for each environmental and ecosystem anomaly, with the strongest effects on PPT,
carbon uptake, and SoilW in late spring and summer (Figure 3, blue), but these anomalies are still exceeded
by year-to-year variability. Increasing severity of NAO alone does not lead to systematic changes in carbon
uptake across TexMex.

Sorting based on strong La Niña years (ENSO<�1σ, σ = 1.02) and negative NAO years (NAO< 0) further
reduces the number of events from 14 to 3 (1956, 1971, and 2011) and leads to strongly amplified (factors
4–10) and statistically significant reductions in PPT, carbon uptake, ET, and environmental stresses through
the entire year (Table 2, column 4; Figure 3, cyan). JULES shows stronger negative TER anomalies compared
to previously discussed ENSO/NAO conditions, but the ratio of anomalies of NEP to GPP increases from
24% in the first case (ENSO/NAO< 0) to 33% in the present case, indicating an increasing impact of low
water availability and GPP loss on regional carbon uptake and conversion of TexMex to net carbon source
in every season except autumn. These anomalies are some of the largest in TexMex over the last 63 years
(Figure 4), with 2011 ranking as one of the largest anomalies in North America over the last 30 years
[Zscheischler et al., 2014a]. Given the significance of these anomalies relative to climatology and year-to-year
variability, it appears likely that increasing severity of La Niña during negative phases of NAO has led to
significant reductions in carbon uptake on at least three different occasions since 1950 tied to enhanced
soil moisture and heat stress.

Finally, we sort events based by strong NAO (NAO<�1σ) and La Niña (ENSO<�1σ) years and find that
only the 2011 drought matches this criteria. In other words, 2011 represents the only year in the 63 year
climatology that negative phases of NAO and ENSO both exceed �1σ, where the NAO=�1.61 exceeds
�2σ (second largest event on record next to 2010 after filtering) and ENSO=�1.38 exceeds �1σ (seventh
largest event on record). This climatologically rare event leads to further amplification of all anomalies.
JULES shows especially high PPT deficits in winter and spring which, unlike normal ENSO/NAO< 0 years,
extends well into summer and fall (Figure 3a, red line). This exceeds climatological variability by 2σ,
precipitation loss in ENSO<�1σ and NAO< 0 years by 40%, and precipitation loss in ENSO/NAO< 0 years
by an order of magnitude.

Spring and summer precipitation deficits in 2011 were strongly amplified relative to ENSO/NAO< 0 years and
the most extreme over the 63 year record (Figure 4a). This had extreme effects on environmental stress indi-
cators, including directly producing negative SoilW anomalies and indirectly producing positive SWdwn and
Ts anomalies (through decreased cloudiness), the latter two of which also approach their highest anomalies
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on record. Effects on ecosystem function include highest negative anomalies of GPP (�0.50 PgC yr�1), ET
(�0.42 kgm�2 s�1), and NEP (�0.23 PgC yr�1) on record (see Figure 4 and Table 2, column 6), and third high-
est anomaly of LAI (�0.085m2m�2). The ratio of simulated NEP to GPP loss also increases to 45% in 2011,
such that GPP loss drives a 50% increase in CO2 flux to the atmosphere, likely due to record high tempera-
tures (1 K warmer on average) and relative increase in heterotrophic respiration, consistent with findings
by Rajan et al. [2013].

Given the extreme nature of the 2011 drought relative to the 1950–2012 climatology, we repeat our analysis
excluding 2011 to test for robustness. In general, we find similar spatial patterns of precipitation in Figure 1
but with fewer significant grid points, including elimination of significant grid points in south and east Texas
in ENSO< 0 years (Figure 1a) and in north Texas in ENSO/NAO< 0 years (Figure 1c). While removal of 2011
leads to a reduction in the magnitude of negative anomalies at seasonal scale and a loss of significance for
NEP, the negative anomalies of PPT, GPP, and ET retain their significance throughout the entire year for
ENSO<�1σ and NAO< 0 years (Table 2, column 5). These results support our primary finding that strong
La Niña years and negative NAO years have led to significant impairments of ecosystem function.

In summary, model simulations constrained by observed climate show that hot, dry, and sunny conditions
associated with strong La Niña’s and exacerbated by negative phases on the NAO lead to climatologically
significant reductions of carbon uptake in the TexMex regions, with impacts to GPP (�312 g Cm�2 yr�1

or �0.42 ± 0.18 Pg C yr�1) representing one third of typical TexMex gross productivity (1.3 Pg C yr�1)
and impacts to NEP (�103 g Cm�2 yr�1 or �0.14 ± 0.11 Pg C yr�1) causing a carbon neutral region to
become a significant carbon source. This drought-induced carbon source is amplified under extremely
warm temperatures such as during the 2011 drought due to smaller decreases in heterotrophic respiration
relative to GPP.

3.4. Evaluation of JULES Carbon Fluxes During 2011 TexMex Drought

Estimates of GPP constrained satellite SIF observations (GOPT) show decreased GPP throughout TexMex dur-
ing TMD11 (Figure 5a). From GOPT, we estimate a total annual GPP reduction of 0.42 ± 0.04 PgC yr�1 in the
TexMex domain, representing a 37% decrease in GPP from 2010 (1.13 PgC yr�1) to 2011 (0.70 PgC yr�1), with
strongest reductions in central and eastern Texas (Figure 5a). This GPP decrease is strongest in semiarid eco-
systems (0.60 PgC for JULES and 0.34 Pg C for IGBP) and driven primarily by grasslands (0.28 PgC and
0.19 Pg C, respectively). GPP is reduced throughout the year (Figure 5c, solid) but most significantly in the
growing season, with a slight recovery or increase of GPP at the end of the year in late fall/early winter. SIF
is also reduced in 2011 (Figure 5c, dashed) but only by half as much as GOPT, reflecting a combination of
enhanced a priori constraint (higher agreement among eight biosphere models) and reduced observational
constraint (assimilation of fewer SIF data). Cross marks indicate grid points where ΔGOPT exceeds posterior
uncertainty and hence where GOPT tendencies are determined to be statistically significant. Assimilation of
satellite SIF strongly reduces prior uncertainty from the ensemble of eight TRENDY models and produces sig-
nificant GPP reductions in the eastern portions of Texas and Oklahoma.

The geographic distribution of JULES GPP tendencies in 2011 is consistent with GOPT throughout TexMex
(Figures 5a and 5b). However, JULES GPP reductions, estimated as 0.63 ± 0.09 PgC yr�1 (0.50 Pg C semiarid)
from 2010 (1.34 PgC yr�1) to 2011 (0.71 Pg C yr�1), exceed GOPT (0.42 ± 0.04 PgC yr�1) by nearly 50% in
the TexMex region, largely due to higher-simulated GPP during the 2010 growing season (Figure 5d). High
uncertainty of JULES GPP tendencies is driven by high spread among eight biosphere models in this region
(fewer cross marks in Figure 5b and higher-uncertainty range in 2011 in Figure 5d). A model intercomparison
study of carbon flux sensitivity to climate extremes shows similar high spread across model ensembles but
general agreement of GPP loss during drought [Zscheischler et al., 2014b].

JULES shows a fairly wide range of negative GPP tendencies throughout TexMex, with increasing magnitude
of GPP loss from west to east. This spatial pattern is highly consistent with GOPT, and the high slope
(y = 1.5x + 0.026) supports the findings above, indicating a 50% greater GPP variability in JULES. The high
correlation (r=0.91± 0.17, p=0.0015) is encouraging but expected given the use of JULES as a prior in the
GOPT estimation methodology. Thus, we also check for consistency against independent estimates from
the flux tower-based MPI and reflectance based MOD17. Comparison to MPI indicates high correlation of
GPP tendencies (r=0.84± 0.22, p=0.0097) but factor of 2 stronger variability (y=1.9x� 0.073). Comparison
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to MOD17 shows reduced correlation of GPP tendencies (r=0.43±0.37, p=0.29) but improved agreement of
GPP variability (y=1.2x� 0.12). In all cases, model and semiempirical products show GPP loss in all TexMex grid
points. In general, these comparisons show consistency of spatial patterns and a likely overestimate of GPP loss.

Eddy covariance observations show consistent patterns of decreasing CO2 uptake across Texas and New
Mexico in 2011 relative to 5+ year averages from 2005 to 2012 in Texas and 2007 to 2012 in New Mexico
(Table 1 and Figure 6). NEP decreases (less CO2 uptake) across all sites relative to both the previous year
and the 5+ year average and thus represents a potentially significant departure from the long-term aver-
age. NEP increases slightly at first at the beginning of the year but decreases quickly during the growing
season (~April–September) and into autumn. We also find simultaneous decreases in GPP and TER during
drought, consistent with experiments [Shi et al., 2014] and other observational studies [Law et al., 2001;
Ciais et al., 2005; Schwalm et al., 2010, 2012]. NEP reductions due to reduced canopy photosynthesis are
slightly offset by NEP increases by suppressedmicrobial respiration. While these processes have competing
effects on ecosystem carbon sink capacity, the GPP effect is larger and thus primarily responsible for the
reduced NEP in 2011. Growing season NEP reduction averaged across towers is 144 g Cm�2 relative to
2010, about half of that observed in northern Texas over the same period [Rajan et al., 2013], and
82 g Cm�2 relative to the multiyear average (based on the average of available months and
extrapolated annually).

Comparison of JULES 2011 CO2 flux anomalies to the five flux tower sites analyzed here shows highly consis-
tent patterns of GPP, TER, and NEP reductions across TexMex (Figure 7). We find high correlation of negative
GPP anomalies (r= 0.92 ± 0.23, p= 0.027) with increasing GPP reductions from west to east and highest GPP
loss in southern Texas (represented by FR2). JULES GPP variability is roughly 33% that observed from flux
towers (y= 0.36x� 0.15). We note that JULES GPP tendencies are unique for each flux tower despite identical
sampling of JULES grid boxes for two different sets of flux towers (Mpj/Vcm and Vcp/Wjs) which are

Figure 5. Gross primary production (GPP) tendencies from 2010 to 2011 for (a and c) SIF constrained GPP (GOPT) and (b and d)
model GPP (JULES). Maps (Figures 5a and 5b) are calculated as the annual mean difference from 2011 to 2010 (blue shading
represents less GPP in 2011), where cross marks indicate grid points where GPP tendencies in JULES and GOPT exceed prior and
posterior uncertainty, respectively. Time series (Figures 5c and 5d) represent monthly GPP (solid) and solar-induced chlorophyll
fluorescence (SIF) from 2009 to 2012 averaged across the TexMex study region, indicated by the black boxes in Figures 5a and 5b.
Red crosses are the growing season (Apr–Sep) average. Shading represents GPP uncertainty.
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geographically close in proximity. Differences in JULES GPP tendencies for these locations arise due to differ-
ent flux tower sampling times, record length, and coarse model spatial scale.

Negative TER anomalies in JULES are also highly correlated with flux towers (r=0.93 ± 0.22, p= 0.023) and
significantly smaller (25%) than observed (y=0.25x� 0.089). In theory, a significant difference between
GPP and TER in either of these statistics could lead to NEP predictions that are inconsistent with observations,
such that a model correctly predicts component fluxes but fails to reproduce the net flux. However, JULES
shows a similar low bias for both GPP and TER anomalies (33% and 25% of observed, respectively). Since
JULES simulates consistent ranges of variability for component fluxes including stronger GPP loss, it also
captures observed patterns of NEP loss at all sites (r=0.69±0.42, p=0.2) and with a smaller overall bias than
component fluxes (y=0.48x� 0.074).

Our model evaluation of carbon flux changes during TMD11 provides high confidence that JULES simulates
spatial patterns of GPP reductions across TexMex with high fidelity. We note, however, that the magnitude
of JULES estimates has a high bias compared to estimates constrained at similar scales by remote sensing
observations. We can adjust simulated estimates assuming the 50% high bias implied by our regional remote
sensing observational analysis and assuming the low bias relative to flux towers is related to scale mismatches.
In this case, expected reductions during the three major drought events from 1950 to 2012 (1956, 1971, and
2011) associated with strong La Niña’s and negative NAO’s are more likely closer to �208gCm�2 yr�1 for
GPP and �69gCm�2 yr�1 for NEP. These adjusted losses are highly consistent with carbon uptake losses
observed at FLUXNET eddy covariance sites in grassland and woody savannah ecosystems in western North
America during a long-term drought from 2000 to 2004, including a total GPP loss of �177gCm�2 yr�1 and
NEP loss of �69gCm�2 yr�1 [cf. Schwalm et al., 2012, Figure 3]. These results suggest that linkages of
TexMex carbon uptake to variability of ENSO and the NAO have played a major role in carbon uptake variability
in North America over the recent historical record.

Figure 6. Monthly gross and net CO2 flux anomalies averaged across five eddy covariance towers in TexMex, including gross
primary production (GPP, green), terrestrial ecosystem respiration (TER, red), and net ecosystem production (NEP, blue).
(a) Values in flux tendencies (difference of 2011 from2010); (b) flux anomalies (difference from5+ year average based on available
data from 2005 to 2012 in Texas and 2007 to 2012 in New Mexico). Negative values denote a reduction of CO2 flux in 2011.
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3.5. Evaluation of JULES Water Fluxes During 2011 TexMex Drought

Satellite observations show widespread decreases in soil moisture in 2011 (Figure 8). In particular, SMOS
indicates decreases in surface soil moisture throughout southern and middle portions of North America,
with peak loss in east Texas (Figure 8a) and a 40% decrease from 2010 to 2011 in TexMex (Figure 8c).
GRACE also shows widespread decreases in total column water in similar regions as SMOS, with peak loss
in central Texas (Figure 8b). However, negative tendencies in GRACE tend to decrease more gradually
moving outward from central Texas than is apparent in SMOS, indicating more spatial variability in the soil

Figure 7. Regressions of annual CO2 flux anomalies (difference of 2011 from 5+ year average) of JULES onto flux tower
anomalies for (a) gross primary production (GPP), (b) terrestrial ecosystem respiration (TER), and (c) net ecosystem pro-
duction (NEP). Model GPP is sampled at the same time as flux towers and in the grid cell closest to the tower location.
Correlation (r), p value (p), slope/y intercept (y), and root-mean-square error are also shown.
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moisture response to drought than in total column water. Satellite soil moisture tendencies in TexMex
are highly consistent with predicted total soil moisture (SoilW) reductions in JULES, with a correlation
of SMOS/JULES tendencies of r = 0.94 ± 0.14 (p=0.0005) and GRACE/JULES tendencies of 0.71± 0.29
(p=0.046). Observed soil moisture is also highly correlated with semiempirical GPP reductions (Figure 9) with
correlation of SMOS/GOPT tendencies of r=0.82± 0.23 (p=0.12; Figure 9a) and GRACE/GOPT tendencies of
r=0.92±0.16 (p=0.0013; Figure 9b).

The combination of CO2 flux and soil moisture data from satellites and flux towers provides convincing
empirical evidence, supporting our JULES simulations of decreasing carbon uptake across semiarid ecosys-
tems of TexMex driven by soil water stress during concurrent negative phases of ENSO and NAO. These
results are consistent with key findings by Zscheischler et al. [2014a, 2014c] that drought and low water avail-
ability are the main cause for regional GPP loss across the planet including the TexMex region.

4. Conclusions

We have used a robust model-observational analysis over the period 1950–2012 to capture a clear relationship
between climate variability, drought, and carbon uptake in semiarid ecosystems of the Texas-northern Mexico
region (i.e., TexMex). Increasing intensity of overlapping negative phases of ENSO and the NAO leads to systematic
impairment of ecosystem function, including significantly reduced biological uptake of CO2 and reduced flux of
groundwater to the atmosphere. JULES predictions of carbon uptake reductions during the 2011 record drought
fall within the range of estimates from remote sensing and flux tower data in the region, with an overestimate of
carbon uptake reductions relative to remote sensing-based estimates and an underestimate relative to flux
towers. Predictions of the sign and spatial distribution of 2011 carbon flux (GPP, TER, and NEP) and soil moisture
(surface and deep) anomalies are highly consistent with ground-based and remote sensing observations.

Future La Niña’s and negative NAO’s are likely to continue to reduce the capacity of semiarid ecosystems in
the southern Great Plains to absorb CO2 and emit water, and projected drying and increasing intensity and
frequency of droughts in this region will exacerbate these effects [Seneviratne et al., 2012; Collins et al., 2013;
Walsh et al., 2014]. However, the magnitude of these effects in future climates is confounded by several other

Figure 8. Soil moisture tendencies from 2010 to 2011 for SMOS and GRACE. (a and b) Maps are calculated as the annual
mean difference from 2011 to 2010 (blue shading represents lower values in 2011). (c and d) Time series represent
monthly soil moisture from 2009 to 2012 averaged across the TexMex study region, indicated by the black boxes in
Figures 8a and 8b. Red crosses are the growing season (Apr–Sep) average.

Global Biogeochemical Cycles 10.1002/2015GB005125

PARAZOO ET AL. CARBON UPTAKE VARIABILITY IN TEXAS-NORTHERN MEXICO 1262



processes happening in parallel, including future CO2 fertilization, which is expected to increase water use
efficiency through partial stomata closure and consequently increase the rate of carbon uptake per unit of
water lost [Morgan et al., 2011; Keenan et al., 2013; Xu et al., 2013; Zscheischler et al., 2014d], and increasing
fractional vegetation, which will increase total carbon assimilation in semiarid ecosystems [Donohue et al.,
2013]. Future studies should therefore examine the expected carbon and water cycle responses of the
TexMex region to La Niña and the NAO under future climate projections with and without elevated CO2

and with a special focus on grasslands which dominate the region.

The ability to predict the carbon-climate feedbacks in response to future La Niña’s depends fundamentally on
atmospheric model fidelity in representing ENSO, the NAO, and associated changes in precipitation. While
these atmospheric patterns show up in observational analyses, coupled ocean-atmosphere simulations,
including those from phase 5 of the Coupled Model Intercomparison Project (CMIP5), strongly underestimate
the intensity of the 2011 Texas-Mexico drought [Hoerling et al., 2013; Seager et al., 2014] and hence the mag-
nitude of carbon uptake reductions. Even when these models are driven by prescribed sea surface tempera-
tures, they fail to represent the spatial patterns and magnitudes of precipitation in North America [Hoerling
et al., 2013]. This is attributed partly to model inability to simulate the NAO as well as the extreme difficulty

Figure 9. Regressions of regional mean annual 2011 tendencies (difference of 2011 from 2010) of GOPT onto (a) SMOS soil
moisture and (b) GRACE liquid water equivalent (LWE), respectively. Correlation and p value are also shown.
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in modeling precipitation and is likely to lead to biases in carbon cycle projections from CMIP5 models [e.g.,
Ahlström et al., 2012]. Results from this study highlight a need to improve atmospheric model predictions of
ENSO and the NAO in order to improve predictions of future impacts on the carbon cycle and the associated
feedbacks to climate change.
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