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Abstract
Aim: The mechanisms of plant trait adaptation and acclimation are still poorly un‐
derstood and, consequently, lack a consistent representation in terrestrial biosphere 
models (TBMs). Despite the increasing availability of geo‐referenced trait obser‐
vations, current databases are still insufficient to cover all vegetation types and 
environmental conditions. In parallel, the growing number of continuous eddy‐co‐
variance observations of energy and CO2 fluxes has enabled modellers to optimize 
TBMs with these data. Past attempts to optimize TBM parameters mostly focused 
on model performance, overlooking the ecological properties of ecosystems. The 
aim of this study was to assess the ecological consistency of optimized trait‐related 
parameters while improving the model performances for gross primary productivity 
(GPP) at sites.
Location: Worldwide.
Time period: 1992–2012.
Major taxa studied: Trees and C3 grasses.
Methods: We optimized parameters of the ORCHIDEE model against 371 site‐years 
of GPP estimates from the FLUXNET network, and we looked at global covariation 
among parameters and with climate.
Results: The optimized parameter values were shown to be consistent with leaf‐scale 
traits, in particular, with well‐known trade‐offs observed at the leaf level, echoing the 
leaf economic spectrum theory. Results showed a marked sensitivity of trait‐related 
parameters to local bioclimatic variables and reproduced the observed relationships 
between traits and climate.
Main conclusions: Our approach validates some biological processes implemented in 
the model and enables us to study ecological properties of vegetation at the canopy 
level, in addition to some traits that are difficult to observe experimentally. This study 
stresses the need for: (a) implementing explicit trade‐offs and acclimation processes 
in TBMs; (b) improving the representation of processes to avoid model‐specific pa‐
rameterization; and (c) performing systematic measurements of traits at FLUXNET 
sites in order to gather information on plant ecophysiology and plant diversity, to‐
gether with micro‐meteorological conditions.

K E Y W O R D S

data assimilation, optimization, ORCHIDEE, plant acclimation, plant functional traits, 
terrestrial model
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1  | INTRODUC TION

Terrestrial biosphere models (TBMs) describe the different pro‐
cesses controlling exchanges of energy and trace gases between the 
atmosphere and the biosphere. Process‐based TBMs are useful tools 
for understanding the dynamics of ecosystems under changing envi‐
ronment, for present‐day to future conditions.

In most TBMs, the worldwide vegetation is divided into plant 
functional types (PFTs) based on general characteristics of the photo‐
synthetic pathways, phenology, structure and physiology. Different 
PFTs usually share the same equations but use different parameter 
values to describe generic processes (photosynthesis, respiration), 
whereas biome‐specific equations may be used for phenology and 
allocation. Therefore, for a given PFT, only the differences in climate 
and soil properties can determine spatial and temporal gradients in 
ecosystem state variables.

The prescribed values of PFT‐specific parameters are derived 
from discrete observations obtained at varying spatial scales (or‐
gans, individuals or ecosystems; Kattge, Knorr, Raddatz, & Wirth, 
2009; Reich, Wright, & Lusk, 2007) and in specific environmental 
conditions, despite the modulation of real‐world plant traits by cli‐
mate (Maire et al., 2015; Ordoñez et al., 2009; van Ommen Kloeke, 
Douma, Ordonez, Reich, & Bodegom, 2012; Wright et al., 2005) and 
soil properties (Fisher, Badgley, & Blyth, 2012). In addition, some 
TBM parameters relate to traits that are difficult to measure ex‐
perimentally (e.g., root turnovers or carbon allocation) or are model 
specific. These parameters can hardly be optimized directly from ob‐
servations, and their adjustment to varying environmental conditions 
can be determined only by labour‐intensive multifactorial ecosystem 
manipulation experiments (Luo, Jiang, Niu, & Zhou, 2017). This rigid 
determination of parameter values, combined with the use of sin‐
gle PFTs to cover a range of different species (Peaucelle, Bellassen, 
Ciais, Peñuelas, & Viovy, 2017), hinders a realistic representation of 
the past, present and future ecosystem dynamics, at both the local 
and the regional scale, and their response to global drivers, such as 
climate, elevated CO2 and nutrient fertilization (Atkin et al., 2015; 
Hartig et al., 2012; Kroner & Way, 2016; Reich et al., 2016).

To overcome the rigidity of the PFT representation, various ap‐
proaches have been proposed to provide continuous distributions 
of plant functional traits related to model parameters. These ap‐
proaches range from extrapolating trait observations across spatial 
gradients (Verheijen et al., 2015) to estimating optimal trait values 
according to ecological theories and plant‐centred approaches 
(Pavlick, Drewry, Bohn, Reu, & Kleidon, 2013; Prentice, Dong, 
Gleason, Maire, & Wright, 2014; Reu et al., 2011). The drawback of 
these different approaches is that they require both spatial and tem‐
poral observations for model calibration and/or validation. Despite 
the increasing number of geo‐referenced trait observations (Kattge 
et al., 2011), current databases are insufficient to cover all vege‐
tation types and environmental conditions for projections at the 
ecosystem level (Musavi et al., 2015, 2016). Moreover, trait obser‐
vations should be co‐located with process and meteorology data to 
understand linkages between traits and ecosystem function (Law et 

al., 2008), which is rare in existing databases, although increasingly 
being addressed for some biomes (Bjorkman et al., 2018). Long‐term 
monitoring of functional traits is needed to assess the adjustments 
to climate. Given that such information is still lacking, approaches 
have been developed that confound the spatial and temporal dimen‐
sions of trait variability.

Another modelling strategy consists of optimizing TBMs against 
observed variables sensitive to ecosystem‐level parameters in order 
to overcome these limitations. This approach assumes that the model 
structure is unbiased, so that realistic parameters values can be esti‐
mated when model simulations best match observations. Given that 
biometric variables are sparse and often depend on processes not 
represented in models (Thum et al., 2017), energy and trace gas flux 
measurements are more appealing to optimize TBM parameters.

Eddy‐covariance data provide near‐continuous observations of 
CO2, latent heat and sensible heat fluxes, and are therefore well 
suited for better constraining photosynthesis, respiration, transpi‐
ration and carbon phenology model parameters. Eddy‐covariance 
measurements have been used extensively to improve specific per‐
formances of TBMs (i.e., their ability to reproduce specific observed 
ecosystem behaviours; Carvalhais et al., 2010; Kuppel et al., 2012; 
Santaren, Peylin, Bacour, Ciais, & Longdoz, 2014; Schürmann et al., 
2016). However, such model calibrations are disconnected, by con‐
struction, from ecological theory or trait‐based relationships and do 
not exploit the full potential of continuous flux observations across 
the globe, which provide both spatial and temporal information.

In this study, we aim to assess the consistency of model trait param‐
eters optimized against eddy‐covariance flux tower measurements of 
growth primary productivity (GPP) using the state‐of‐the‐art Organising 
Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land sur‐
face model (Krinner et al., 2005). In addition to classical optimization 
analyses (i.e., looking for the optimal parameter sets that result in the 
greatest model improvement), we focus here on the variability of op‐
timized parameter values and on inter‐traits correlations or trait–envi‐
ronment correlations. By doing so, we address the following research 
questions: (a) are the parameters retrieved by optimizing the model 
against flux tower records consistent with known relationships between 
traits (i.e., trade‐offs), or (b) between traits and environmental variables? 
(c) What new relationship can be identified with this approach?

2  | METHODS

2.1 | The ORCHIDEE model

The land surface model ORCHIDEE (v.1.9.6, without nitrogen cycle) 
computes biosphere–atmosphere exchanges, consistently with 
water and carbon storage, using ordinary differential equations 
(Krinner et al., 2005) (Figure1). Given meteorological forcing, plant 
and soil conditions, the model simulates photosynthesis, all compo‐
nents of the surface energy budget and hydrological processes with 
a half‐hourly time step, whereas the dynamics of carbon storage are 
calculated daily. In ORCHIDEE, the land surface is discretized into 
12 PFTs and bare soil (Supporting Information Appendix S1, Table 
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S1.1). All PFTs share the same equations but use different parameter 
values, except for phenology (budburst/senescence), which is PFT 
specific (Botta, Viovy, Ciais, Friedlingstein, & Monfray, 2000).

2.2 | Eddy‐covariance gross primary productivity

We used half‐hourly flux observations from eddy‐covariance sites 
within the FLUXNET network (https​://fluxn​et.fluxd​ata.org). The 
sites were selected on the basis of spatial homogeneity and the 
dominance of a vegetation type that could be matched easily to one 
of the PFTs in ORCHIDEE, excluding crops and C4 grasses. The veg‐
etation type information at each site was obtained from http://fluxn​
et.ornl.gov. A list of analysed FLUXNET sites (98 sites, 371 site‐years) 
and the corresponding PFTs is given in the Supporting Information 
(Appendix S2). The following analyses rely on GPP derived from net 
ecosystem exchange (NEE; reference with variable USTAR ‐ friction 
velocity threshold) after accounting for ecosystem respiration cal‐
culated using the method of Reichstein et al., (2005) provided in the 
FLUXNET dataset. Years with <80% of available half‐hourly obser‐
vations were discarded.

2.3 | Meteorological data

Given that ORCHIDEE needs continuous half‐hourly meteorological 
forcing, we filled the gaps in time series of weather variables using 
the interpolation algorithm developed by Vuichard and Papale (2015). 

Linear interpolation was applied between available observations when 
the gap duration in the meteorological data was <6 h. Otherwise, the 
variables were interpolated and bias corrected using the ERA‐interim 
re‐analysis (c. 80 km; Dee et al., 2011). Snow and rain were identified 
according to air temperature (threshold for snow being 0°C).

2.4 | Data assimilation procedure

The parameters of ORCHIDEE were optimized with the ORCHIDAS 
package developed by Kuppel et al. (2012), Bacour et al. (2015), 
MacBean et al. (2015) and Peylin et al. (2016) (https​://orchi​das.lsce.
ipsl.fr/; Figure 1). Gaussian distributions of parameter and observa‐
tion errors were assumed, and a gradient‐based approach was used 
to minimize the Bayesian cost function, J (Tarantola, 2005):

This function quantifies the difference between observations 
(y) and simulations [H(x); here, GPP), and between a priori (xb) and 
optimized parameters (x). The B and R matrices are the prior error 
covariance matrices for parameters and observations, respectively 
(including, in the latter case, eddy‐covariance measurement and 
model errors).

Both R and B were taken as diagonal, as discussed by Kuppel 
et al. (2012). The J(x) function was minimized iteratively with the 
L‐BFGS‐B algorithm (Byrd, Lu, Nocedal, & Zhu, 1995), which no‐
tably allows bounding the range of variation of the parameters to 

(1)J (x)=
1

2

[

(

y−H (x)
)T

R
−1 (

y−H (x)
)

+
(

x−xb
)T

B
−1 (

x−xb
)

]

F I G U R E  1  Schematic representation 
of the modelling protocol followed in 
this study. For each FLUXNET site‐year 
(blue), the model ORCHIDEE (green) 
was calibrated with the data assimilation 
system ORCHIDAS (red) in order to 
reproduce gross primary productivity 
(GPP) observations. The ORCHIDAS 
system uses a gradient‐based approach 
(L‐BFGS‐B) to reduce the cost function 
J(x). For each site‐year, 14 parameters 
(listed in Table 1) were optimized 10 times 
with different initial values. The best 
calibration [i.e., leading to the minimum 
value of J(x)] was retained. This procedure 
was repeated for each site‐year, resulting 
in 371 sets of 14 independently optimized 
parameters. Finally, correlations between 
optimized parameters and climate were 
explored using standardized major axis 
regressions

https://fluxnet.fluxdata.org
http://fluxnet.ornl.gov
http://fluxnet.ornl.gov
https://orchidas.lsce.ipsl.fr/
https://orchidas.lsce.ipsl.fr/
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optimize. After model calibration (i.e., minimizing J), the posterior 
error covariance matrix (A), providing the full statistical distribution 
of the optimized parameters was estimated by:

where H is the Jacobian of the model at the minimum of J (Tarantola, 
2005). The covariances of errors between parameters contained in 
the non‐diagonal terms of A inform about the ability of observations 
given the structure of H to solve for parameters individually or in 
combination. High error covariance between two parameters relates 
to the equifinality problem, whereby different values of these param‐
eters result in model outputs equally matching the observations (rel‐
ative to R).

2.5 | Optimized parameters

We restricted our exercise to the parameters involved in the assimila‐
tion of CO2, following previous sensitivity analyses from Kuppel (2012). 

We analysed 14 parameters controlling long‐term and inter‐annual 
GPP variability (Table 1). The key equations involving each optimized 
parameter and their effect on the simulated GPP are described in the 
Supporting Information (Appendix S1, Table S1.2). The parameters 
were related to photosynthetic capacity, phenology, carbon alloca‐
tion and the water budget. Photosynthetic capacity parameters were 
the maximal rate of carboxylation limited by CO2 (Vcmax), the ratio 
between the maximal rate of carboxylation limited by light and Vcmax 
(Vj/Vc), the optimal temperature of photosynthesis (Topt) and the slope 
of the Ball–Berry model for stomatal conductance (gslope). Parameters 
driving phenology were the specific leaf area (SLA), leaf longevity (Lage), 
summer maximal leaf area index (LAImax) and the temperature for leaf 
senescence (Csenes). Allocation parameters were the minimal fraction 
of LAImax for the use of carbohydrate reserves (Klai) and the period 
after budburst during which the use of carbohydrates is allowed (tau‐
leaf) for the formation of new leaves. Finally, two parameters involved 
in the water status of the plant were the exponential factor describ‐
ing the root profile and length (Kroot) and the minimal threshold at 
which photosynthesis becomes limited by minimum water potential 
(Wlim). In addition, two scaling factors, Kbm (initial biomass of leaves 

(2)A=

[

H
T
R
−1
H+B−1

]−1

Parameter Description (units) Processes involved

SLA Specific leaf area (in square metres per 
gram of carbon)

Photosynthesis, phenology, 
allocation

Lage Leaf lifespan (in days) Photosynthesis, Phenology

Vcmax Maximal carboxylation rate limited by 
CO2 (in micromoles per square metre per 
second)

Photosynthesis

Vj/Vc Ratio between the maximal carboxylation 
rate limited by light and Vcmax

Photosynthesis

Topt Optimal temperature of the photosynthesis 
(in degrees Celsius)

Photosynthesis

gslope Slope of the Ball–Berry relationship for the 
stomatal conductance

Photosynthesis, energy 
budget

LAImax Maximal leaf area index Photosynthesis, phenology, 
allocation

Klai Minimal fraction of LAImax for the use of 
carbohydrate reserves

Allocation

bbdate Budburst date (day of the year) Phenology

tauleaf Period after budburst during which the use 
of carbohydrates is allowed

Allocation

Csenes Temperature for leaf senescence (used only 
for deciduous)

Phenology

Kbm Multiplicative factor for the initial leaf 
biomass (used only for evergreens)

Phenology, allocation

Kroot Exponential factor describing the root 
profile and depth

Water budget, 
photosynthesis

Wlim Minimal threshold at which the photo‐
synthesis becomes limited by water 
availability

Photosynthesis

Note: All the parameters are common to each plant functional type. Kbm and bbdate are scaling 
factors added to the model to improve the optimization of the seasonal cycle of the gross primary 
productivity but are not analysed in the study (for the detailed equations involving each parameter, 
see the Supporting Information (Appendix S1, Table S1.2).

TA B L E  1  Description of the 14 
optimized parameters and associated 
processes
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for evergreen species) and bbdate (spring burdburst date), were added 
in the optimization to allow adjustment of the seasonal timing of GPP.

The range in variation of the three parameters corresponding to 
observable traits (SLA, Vcmax and Lage) was set from the TRY data‐
base for each PFT (Azevedo & Marenco, 2012; Cernusak, Hutley, 
Beringer, Holtum, & Turner, 2011; Deng et al., 2004; Domingues et 
al., 2010; Kattge et al., 2009, 2011; Meir, Levy, Grace, & Jarvis, 2007; 
Nascimento & Marenco, 2013; Niinemets, Oja, & Kull, 1999; van de 
Weg, Meir, Grace, & Ramos, 2012). Species from the TRY database 
were assigned to corresponding PFTs based on available metadata 
about plant structure, leaf phenology and climate information ex‐
tracted from species' latitude and longitude coordinates. We chose 
as a reference range the 2.5th–97.5th percentile of the trait distribu‐
tions from TRY. The variation ranges for the other parameters were 
fixed based on expert judgement (Kuppel et al., 2014).

2.6 | Simulations and assimilation set‐up

At each flux tower site, we assumed that the eddy‐covariance 
flux footprint was entirely composed by a single PFT (Supporting 
Information Appendix S2). The model was forced by local mete‐
orological observations (see Section 2.3) and soil texture from the 
harmonized worldwide soil database (Nachtergaele et al., 2012) to 
define the residual and saturation water contents, and the saturated 
hydraulic conductivity in the soil model (Ducoudré, Laval, & Perrier, 
1993; Krinner et al., 2005) based on Van Genuchten (1980). Initial 
soil carbon pools in equilibrium with local climate were obtained 
with an analytical spin‐up procedure (Lardy, Bellocchi, & Soussana, 
2011; Xia, Luo, Wang, Weng, & Hararuk, 2012). Initial biomass was 
simulated until reaching equilibrium (generally after ac.  300‐year‐
long simulation using the studied year meteorological data and con‐
stant CO2 set to the level of the year), thus different from the real 
stand age observed at each site.

We optimized GPP averaged over 15  days using moving win‐
dows to avoid noise from high‐frequency variations in the parame‐
ter optimization that could induce convergence issues (Bacour et al., 
2015). As far as test data from eddy‐covariance measurements are 
concerned, high‐frequency variations in fluxes also include variation 
in the boundary layer that are unrelated to the fluxes at the surface 
(Ibrom et al., 2006). Santaren, Peylin, Viovy, and Ciais (2007) esti‐
mated that for parameters related to photosynthesis and phenology, 
optimization based on half‐hourly observations did not improve the 
results. For each site, the optimizations were conducted year by year 
to account for trait variability over time (Wu et al., 2013).

Following MacBean et al. (2015), each calibration (site‐year) 
used 10 replicates representing different starting parameter sets, 
with values randomly picked within their allowed variation range 
(Supporting Information Appendix S1, Table S1.3). Only the best cal‐
ibration out of these 10 replicates was retained for analyses. This 
procedure increases the chances of finding the global minimum of J, 
because Santaren et al. (2014) showed that the gradient‐based algo‐
rithm was sensitive to initial conditions with a nonlinear and complex 
model, such as ORCHIDEE.

2.7 | Analyses

We retained only calibrations for which the optimized model repro‐
duced GPP observations with high precision. The rationale for this 
was that optimized parameters from model runs that agreed poorly 
with GPP observations provided little or no useable information. The 
filtering was performed using a two‐step procedure.

First, the criterion for “improved GPP simulation” was the rel‐
ative site‐year posterior Root Mean Square Error (RMSE) (RMSEre) 
between observed and optimized GPP:

Whenever the value of RMSEre was higher than the all‐RMSEre me‐
dian plus one interquartile range (IQR), the site‐year was removed 
from the analysis. We also discarded sites with “inconsistent param‐
eters values” [i.e., with too large differences between the 10 repli‐
cates at the same site, reflecting convergence issues (equifinality) of 
the algorithm].

Second, for sites with at least two RMSEre <10% among the 10 
replicates, we estimated the coefficient of variation (CV) of parameters 
across the replicates. We retained only years for which the median 
CV was below the median of all CV plus one IQR of their distribution. 
This filtering provided optimized parameters from 371 site‐years (of 
516 considered initially) for 98 sites (of 116; Supporting Information 
Appendix S2) spanning seven PFTs located in boreal, temperate and 
tropical areas (Supporting Information Appendix S3, Table S3.4).

For each parameter, we calculated the uncertainty reduction 
(UR) as:

With σpost and σprior being the posterior and prior parameter uncertain‐
ties (square root of the diagonal elements of A and B). We then sepa‐
rated in the analysis the well‐constrained from the poorly constrained 
parameters. Well‐constrained parameters are defined as those with: (a) 
UR higher than the median of UR distributions for all parameters; and 
(b) a low correlation of error with other parameters (from the A matrix; 
Equation 2). Note that a strong error correlation making two parameters 
poorly constrained individually is still an interesting result because it in‐
dicates a range of possible trade‐offs between these two parameters.

The optimized parameter values were regressed against the local 
background bioclimatic variables (Table 2) for each site and against 
the soil relative water content (volume of water by volume of soil) 
simulated by ORCHIDEE. Bioclimatic variables were averaged over 
the whole year and over the length of the growing season (GSL). For 
temperate sites, the growing season was defined as the period with 
daily temperature >5°C and relative soil water content >0.2 (Violle et 
al., 2015). In some tropical regions, the growing season length is po‐
tentially limited by water availability (wet/dry seasons); we thus kept 

(4)RMSEre=
RMSE

mean
(

GPPobs

)

(5)UR=1−
�post

�prior
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the same definition as for temperate ecosystems. For boreal sites, 
we adapted the definition of the growing season such that weekly 
temperature must be >0°C.

Analyses were performed with the R v.3.2 software (R Core 
Team, 2016), and standardized major axis (SMA) analyses were per‐
formed with the “lmodel2” package (Legendre, 2014). Given that we 
sought to compare simulated correlations with common ecological 
properties observed at the global scale, we analysed different groups 
of PFTs: all PFTs together; deciduous versus evergreens; needle‐
leaves versus broadleaves; and C3 grasses (Supporting Information 
Appendix S1, Table S1.1). Regressions were performed both with and 
without a logarithmic transformation of the data.

3  | RESULTS AND COMPARISON TO 
E XISTING LITER ATURE

3.1 | Optimization performances

A full description of the optimization performances and parameter 
uncertainty reduction can be found in the Supporting Information 
(Appendix S3).

In all cases, the optimized GPP time series agrees better with 
observations than the prior ones, with the RMSE being reduced by 
76.6 ± 13.0% (Supporting Information Appendix S3, Table S3.4). The 
median posterior RMSEre is 0.19, and the IQR is 0.11. The median 
CV over all parameters is 0.24 (IQR = 0.13). After optimization, the 
parameter uncertainty (Equation 5) is reduced by 30% on average 
(Supporting Information Appendix S3, Table S3.5).

The posterior error correlation matrix A (Eq. 2) reveals a posi‐
tive correlation between Vcmax and several other parameters, in‐
cluding (Figure 2): Topt (r = 0.57 ± 0.05); gslope (r = −0.37 ± 0.04); 
Kroot (r = 0.24 ± 0.07) and Vj/Vc (r = −0.31 ± 0.04). There also exists 
a negative correlation between Kroot and gslope (r = −0.38 ± 0.08), 
between Kroot and Wlim (r = −0.30 ± 0.09) and between LAImax and 
Klai (r = −0.37 ± 0.16) (Figure 2).

Joint analysis of information from the uncertainty reduction 
(Supporting Information Appendix S3) and the cross‐parameter error 
correlation enables us to distinguish between: (a) well‐constrained 
parameters (Lage and SLA for evergreens; Lage and Csenes for de‐
ciduous); (b) well‐constrained parameters with a risk of equifinality 
(gslope, Kroot, LAImax, Topt and Vcmax); and (c) poorly constrained 
parameters (Vj/Vc, Klai, Tauleaf and Wlim; Table 1). In the following 
analyses, trait covariations have to be interpreted with respect to 
confidence intervals (posterior error) in parameter estimates.

3.2 | Covariation between parameters

We analysed cross‐site correlations between optimized parameters 
in relationship to expected trait relationships. The covariation be‐
tween all parameters is illustrated in the Supporting Information 
(Appendix S4, Figure S4.2). For more clarity and considering the 
large number of parameters, we describe here only the relation‐
ships involving four parameters related to phenology (SLA, Lage) and 
photosynthesis (Vcmax, gslope). All relationships are provided in the 
Supporting Information (Appendix S4, Table S4.6).

We observed a negative correlation between SLA and Lage 
for all PFTs (r = −0.63; Table 3) and for evergreens (r = −0.67) and 
broadleaves PFTs (r  = −0.53), separately. The slope of the emerg‐
ing relationship between LMA (1/SLA) and Lage (1.91; 1.63–2.24 
95% confidence interval; p < 0.05) for all PFTs was close to the ob‐
served slope from field observations (1.71; 1.62–1.82; Wright et 
al., 2004). Results highlighted other covariations between Lage and 
Vcmax (r = −0.59 overall PFTs), gslope and Lage (r = −0.7 for broad‐
leaves), LAImax and SLA (r = 0.6 for needleleaves), and SLA and Vcmax 
(r = −0.55 for evergreens). Here again, the slope between Lage and 
Vcmax emerging for broadleaves PFTs (−1.69) was close to observa‐
tions (−1.13; Xu et al., 2017).

No relationships were reported between gslope and Lage or be‐
tween glsope and SLA, but a trade‐off between the stomatal con‐
ductance (gs) and Lage was observed experimentally (Poorter & 
Bongers, 2006; Reich, Walters, & Ellsworth, 1992), in addition to a 
positive correlation between gs and SLA (Poorter & Bongers, 2006). 
The optimizations showed opposite relationships between gslope 
and SLA depending on the PFT; a positive significant correlation was 

TA B L E  2  Description of bioclimatic variables calculated at each 
site and for each year

Variable Description Units

LAT Latitude Degrees north

MAT Mean annual temperature Degrees Celsius

TMAX Mean temperature of the 
warmest month of the year

Degrees Celsius

TMIN Mean temperature of the 
coldest month of the year

Degrees Celsius

TVAR Temperature difference 
between TMAX and TMIN

Degrees Celsius

DTR Yearly average of diurnal 
temperature range

Degrees Celsius

MAP Mean annual precipitation Millimetres per year

REH Mean annual relative 
humidity

Percentage

SW Mean annual downward 
shortwave radiation (vis‐
ible and near‐infrared)

Watts per square 
metre

PDRY The driest quarter of the 
year is determined (to the 
nearest week), and the 
total precipitation over this 
period is calculated

Millimetres per year

RELP PDRY divided by MAP Fraction

SHUM Yearly averaged soil 
humidity

Fraction

GSL MATgs, DTRgs, SWgs, MAPgs, 
REHgs and SHUMgs are the 
same variables averaged 
during the growing season 
of the plant

–



8  |     PEAUCELLE et al.

obtained for deciduous PFTs and a negative significant correlation 
for evergreens and grasses (Table 3).

The positive relationship between SLA and LAImax emerging from 
optimized parameters for coniferous PFTs was consistent with the 
positive correlation between LAI and SLA reported by Pierce, Running, 
and Walker (1994) for coniferous forests. Finally, a negative correla‐
tion between SLA and Vcmax has been observed experimentally for 
two gymnosperm species (Niinemets, Lukjanova, Turnbull, & Sparrow, 
2007), confirming the negative relationships found in our study for 
needleleaves. Despite the equifinality risk between gslope and the soil 
water stress, Wlim, in Figure 2, the positive correlation observed for 
broadleaves (r = 0.7) and evergreens (r = 0.52) was comparable to ob‐
servations from independent data compiled by Lin et al. (2015).

Other significant correlations from the optimized parameters 
(Supporting Information Appendix S4, Table S4.6; Figure S4.2) could 
not be verified against observations because of the correlation of 
errors observed in Figure 2 or because of the scarcity of ecological 

data, preventing us from drawing a conclusion about the true nature 
of those correlations, such as between gslope and Vcmax.

3.3 | Variation of trait‐related parameters 
with climate

We analysed correlations between parameters and climate variables 
(Table 4; Supporting Information Appendix S5, Figure S5.4). As for 
covariations between parameters, we described here only those in‐
volving SLA, Lage, Vcmax and gslope. All relationships are listed in the 
Supporting Information (Appendix S5, Table S5.7), and more detailed 
analyses are also available in the Supporting Information (Appendix 
S5).

We found a strong negative correlation between leaf lifespan 
(Lage) and temperatures (MAT, TMIN; r = −0.78/−0.65; Figure 3a) for 
evergreen PFTs. This correlation was reported independently at the 
global scale (van Ommen Kloeke et al., 2012; Wright et al., 2005) 

F I G U R E  2  Error correlation between optimized parameters (derived from the A matrix) averaged over deciduous trees, evergreen trees 
and C3 grass. The colour scale gives the error correlation coefficient. For greater clarity, the coefficient is indicated as a percentage in each 
matrix cell. A description of each parameter is listed in Table 1

(a) (b)

(c)
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and confirmed by Reich, Rich, Lu, Wang, and Oleksyn (2014), who 
showed higher needle longevity with cold temperatures for boreal 
species. However, the observed positive correlation between Lage 
and MAT at the global scale for deciduous PFTs (van Ommen Kloeke 
et al., 2012; Wright et al., 2005) was not found specifically for decid‐
uous systems in our study. Nevertheless, a positive correlation was 
observed for C3 grasses and broadleaves (including deciduous). We 
also found a strong negative correlation between Lage and the mean 
annual precipitations (MAP) for evergreen PFTs (r = −0.65), consis‐
tent with field data (van Ommen Kloeke et al., 2012). In addition, a 
negative correlation between Lage and incident shortwave radiation 
(SW) for evergreens was obtained, consistent with field observations 
(Poorter & Bongers, 2006).

Regarding SLA, we found opposite sensitivities to MAT for ev‐
ergreen (r  = 0.65) and deciduous forests (r  = −0.55). This result is 
consistent with independent leaf‐scale data showing a positive cor‐
relation between SLA and MAT for evergreen species (Figure 3b) and 
a negative correlation for deciduous species (Wright et al., 2005). 
The model calibration also resulted in a positive correlation between 
the relative precipitation (RELP; Table 2) and SLA for deciduous trees 
(r  =  0.60; Figure 3c). Regarding the positive correlations obtained 
between SLA with Kroot or gslope (Table 3), it suggests that SLA is 
highly sensitive to water stress for deciduous trees. For evergreens, 
a positive correlation between SLA and precipitation also emerges 
when considering the length of the growing season (MAPgs, r = 0.57; 

Table 4), which is consistent with trait data (Wright et al., 2005). For 
evergreens, SLA was positively correlated with SW (r = 0.53), a re‐
lationship observed by Givnish, Montgomery, and Goldstein (2004) 
and Poorter and Bongers (2006).

In their meta‐analysis of stomatal conductance parameters from 
observations of several PFTs, Lin et al. (2015) showed that the slope 
of the stomatal conductance is positively correlated with the mean 
air temperature over the growing period and with soil moisture 
stress. Here, our results show the same correlation between gslope 
and soil moisture during the growing season (r = 0.71; Figure 3d) and 
relative precipitation (r = 0.66) for deciduous or broadleaved PFTs. 
On the contrary, we find that gslope is negatively correlated with 
mean annual precipitation for C3 grasses (r = −0.59) and with short‐
wave radiation for broadleaved PFTs (r = −0.63). Medlyn et al. (2011) 
suggested that gslope is proportional to the photosynthesis com‐
pensation point for CO2 and, consequently, to growth temperatures 
of the plant (Bernacchi, Singsaas, Pimentel, Portis, & Long, 2001). 
This assumption is supported by the data from Lin et al. (2015). In 
our study, the relationship between gslope and temperature was not 
supported.

Finally, Vcmax is mostly sensitive to temperature and light for 
broadleaved PFTs, with a negative correlation observed with MAT 
(r = −0.52) and SW (r = −0.54). This result contradicts previous ob‐
servations by Ali et al. (2015), who suggested a positive correlation 
between Vcmax and seasonal temperature and light variations.

TA B L E  3  Relationships between trait‐related parameters

Parameters r PFT Log SMA slope Number of sites References Type

Lage SLA −0.67 ever x −1.39 49 Reich et al. (1999) 0

−0.53 bro x −3.47 37 0

−0.63 All x −1.92 98 Wright et al. (2004) 0

Lage Vcmax −0.90 Bro x −1.69 37 Xu et al. (2017) 0

−0.65 Dec   −2.15 23 0

−0.59 All x −3.13 98 0

gslope Lage −0.70 Bro x −0.74 37 Reich et al. (1992) 1

−0.57 Grass   0.00 26 Poorter and Bongers (2006) 1

gslope SLA −0.62 Ever   −534.01 49 Poorter and Bongers (2006) 3

0.52 Dec   418.99 23 1

−0.51 Grass   −235.65 26 3

LAImax SLA 0.60 Need   422.11 35 Pierce et al. (1994) 1

SLA Vcmax −0.55 Ever x −1.28 49 Niinemets et al. (2007) 1

−0.53 Need x −0.75 35 1

gslope Wlim 0.70 Bro x 1.61 37 Lin et al. (2015) 3

0.52 Ever x 1.47 49 3

Note: For some relationships, values are log10‐transformed (x). For each relationship is shown the number of sites and the correlation coefficient  
(r; blue when negative; red when positive). Only relationships with an absolute and significant (p < 0.05) correlation coefficient >0.5 are listed for the 
different groups of plant functional type (PFT): all, broadleaves (bro; TroEB, TemEB, TDB and BDB), needleleaves (need; TEN and BEN), evergreens 
(ever; TroEB, TemEB, TEN and BEN), deciduous (dec; TDB and BDB) and C3 grasses (gra). Note that evergreens include needleleaves and that broad‐
leaves include deciduous. The type of relationship is given for each trait: 0 = verified with ecological observations; 1 = partly verified on similar data; 
or 3 = different from observations. When available, the reference for verification is given. Well‐constrained parameters are in bold, parameters with 
a risk of equifinality are in plain text, and poorly constrained parameters are in italic. Refer to Table 1 for the description of each parameter.
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4  | DISCUSSION

4.1 | Uncertainties and shortcomings of the 
approach

This section provides an overview of possible shortcomings of 
our approach that might explain some residual mismatch between 
the model and observations. Several factors can impact the op‐
timized value of the parameters, potentially aliasing the observed 

relationships: (a) flux measurement errors and errors in ecosystem 

respiration estimates used to derive gap‐filled GPP; (b) optimization 

protocol/set‐up errors; and (c) model systematic errors deriving from 

absent or poorly represented processes in the model.

First, we restricted our analysis to GPP. This flux is not measured 

directly but estimated from NEE measured using the eddy‐covari‐

ance method, with an estimate of ecosystem respiration determined 

using empirical models (Reichstein et al., 2005), and thus can be 

TA B L E  4  Relationships between trait‐related parameters and climate variables

Trait Climate r PFT Log SMA slope References Type

Lage LAT 0.59 ever   24.90 Reich et al. (2014) 0

−0.56 bro   −13.44   2

MAP 0.66 grass   1.14   2

−0.65 need x −0.66 van Ommen Kloeke et al. (2012) 0

MAT −0.78 ever x −16.95 Reich et al. (2014); van Ommen Kloeke et al. 
(2012); Wright et al. (2005)

0

−0.62 need x −17.93 0

0.54 grass x 107.81   2

0.53 bro x 30.14   2

SW −0.53 ever x −1.84 Poorter and Bongers (2006) 1

0.52 bro x 3.85   2

TMIN −0.65 ever x −30.99 Reich et al. (2014); van Ommen Kloeke et al. 
(2012); Wright et al. (2005)

1

SLA MAP 0.54 need x 0.37 Wright et al. (2005) 0

MAPgs 0.57 ever x 0.47 0

MAT 0.65 ever x 12.16 Wright et al. (2005) 0

MATgs −0.63 bro x −0.86 0

−0.55 dec x −0.96 0

RELP 0.60 dec x 0.25   2

0.59 bro   0.08   2

SW 0.53 ever   0.00 Givnish et al. (2004); Poorter and Bongers 
(2006); Reich et al. (2014)

1

gslope MAP −0.59 grass x −1.12   2

PDRY 0.58 dec   0.02 Lin et al. (2015) 1

REH 0.64 dec   19.24 1

RELP 0.66 bro   42.67 1

0.58 dec   29.05 1

SHUMgs 0.71 dec   20.53 1

SW −0.63 bro   −0.10 2

SWgs −0.55 dec   −0.08   2

Vcmax MAT −0.52 bro   −4.77 Ali et al. (2015) 3

RELP 0.60 bro   511.72   2

SW −0.54 bro   −1.15 Ali et al. (2015) 3

Note: For some relationships, traits values are log10‐transformed (x). For each relationship, the correlation coefficient (r) is given. Only relationships 
with an absolute (and significant p‐value < 0.05) correlation coefficient >0.5 are listed for the different groups of plant functional type (PFT): all, 
broadleaves (bro; TroEB, TemEB, TDB and BDB), needleleaves (need; TEN and BEN), evergreens (ever; TroEB, TemEB, TEN and BEN), deciduous (dec; 
TDB and BDB) and C3 grasses (gra). The type of relationship is given for each trait: 0 = verified with ecological observations; 1 = partly verified on 
similar data; 2 = not verified; or 3 = different from observations. When available, the reference for verification is given. Well‐constrained parameters 
are in bold, and parameters with a risk of equifinality are in plain text. See Table 1 and 2 for the description of each parameter and climate variables, 
respectively.
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biased by several factors (for a list of these factors, see Supporting 
Information Appendix S3). We chose GPP over a combination of NEE 
and latent heat or evapotranspiration fluxes, which has often been 
used to optimize ORCHIDEE (Bacour et al., 2015; Kuppel et al., 2012; 
Peylin et al., 2016), because it implies the optimization of more pa‐
rameters related to soil, respiration and energy budget, and there‐
fore increases the risk of equifinality. To reduce the uncertainties, it 
is necessary to lower the correlation of errors between parameters 
by assimilating complementary biophysical variables. For example, 
assimilating both GPP and LAI estimates at the site level could im‐
prove the evaluation of parameters such as SLA or Lage and, conse‐
quently, improve the estimation of photosynthesis parameters.

Second, the Bayesian framework is based on the assumption 
that the model/observation errors are random and that the model 
structure is “true”. Any bias of model structure is expected to be 
aliased onto the estimated parameters (MacBean, Peylin, Chevallier, 
Scholze, & Schürmann, 2016) and might therefore impact the re‐
trieved correlations. For instance, missing processes would be com‐
pensated during the optimization by adjusting parameters (e.g., light 
attenuation, vertical distribution of leaf area index, diffuse light, hor‐
izontal light distribution in the stand) to non‐optimal values. Also, 
although traits are usually measured at the leaf level, our approach 
rather focuses on traits at the canopy level [given the structure of 
ORCHIDEE and the assumed exponential attenuation of light and 
leaf area index from top to bottom of canopy (Krinner et al., 2005; 
Supporting Information Appendix S1, Table S1.2) and the assimila‐
tion of GPP data]. As an additional test, we conducted the above 
analyses using multi‐year instead of single‐year observations in order 
to add more constraints on parameters (see Supporting Information 
Appendix S4, Figures S4.3 and S5.5). The same relationships were 

found as with single‐year observations, thus strengthening our con‐
clusions, showing that spatial correlations are observed even when 
taking into account a possible temporal variability of traits.

Finally, an incorrect representation of species and the lack of rep‐
resentation of variability of traits within a community in ORCHIDEE 
can affect simulated processes, which will ultimately impact the es‐
timated parameter values (for a discussion on initial site conditions, 
see Supporting Information Appendix S3). Especially, the C3 grass 
PFT represents diverse grasslands, with different species, ecophys‐
iology (Adams, Turnbull, Sprent, & Buchmann, 2016) and manage‐
ment practices (Merbold et al., 2014). This results in an increased 
variability and a high range of estimated plant functional traits 
(Supporting Information Appendix S3, Figure S3.1). A refinement of 
the PFT definition might improve the robustness of optimizations 
(for instance, by separating natural or semi‐managed biomes or by 
distinguishing genera or major species; Peaucelle et al., 2017).

In order to decrease the impact of uncertainty in PFT compo‐
sition and reduce the correlation errors between parameters, the 
use of concomitant observations of traits and carbon fluxes at the 
FLUXNET sites would enable: (a) the constraint of known parame‐
ters; and (b) the validation of optimized traits. However, functional 
trait observations at FLUXNET sites and a precise description of spe‐
cies composition are not yet systematic (Musavi et al., 2015, 2016).

4.2 | Ecological consistency of trait relationships

The optimization of model parameters managed to reproduce many 
known ecological properties. The optimized parameters consistently 
matched the well‐known relationships resulting from the leaf eco‐
nomic spectrum (LES) theory (Reich et al., 1999; Wright et al., 2004). 

F I G U R E  3  Four examples of covariations obtained between optimized parameters (Table 1) and environmental conditions (Table 2) of 
the sites for plant functional types (PFTs) TroEB (black square), TEN (red square), TemEB (green triangle), TDB (blue square), BEN (cyan dots) 
and BDB (pink dots). Each point represents the mean optimized parameter (environmental variable) value for one site, and the error bars 
represent the inter‐annual variability (no bars means only 1 year of measurement). The red line represents the slope of the standardized 
major axis regression. PFT description can be found in Table S1.1 (Appendix S1)

(a)

(c)

(b)

(d)
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In particular, our results align with the trait theory that long‐lived 
canopies are metabolically less active and are consistent with the 
LES empirical evidence that plants invest either in structure or in 
photosynthesis (Liu et al., 2010; Reich, 2014).

Our results also reproduced several observed trait–climate relation‐
ships at the PFT level. Globally, evergreen PFT parameters showed a 
strong dependence on mean annual temperature and radiation, whereas 
parameters for deciduous PFTs exhibited a strong sensitivity to precipita‐
tion and soil moisture over the growing season (Supporting Information 
Appendix S5, Figure S5.4). As postulated by Reich (2014), climate exerts 
a control on the average leaf characteristics at the community level. The 
observed relationships obtained at the PFT level might reflect not only 
differences in plant response to climate, but also differences in plant 
community composition (Shi et al., 2015). These results suggest that both 
the development of acclimation processes and trait‐based approaches 
are needed in TBMs if we seek to capture the effect of biogeography on 
ecosystem characteristics (Fisher et al., 2018; Lu et al., 2017).

Finally, although the results clearly highlight that photosynthesis 
and phenological mechanisms implemented in ORCHIDEE are robust 
enough to reproduce known behaviours of several vegetation spe‐
cies, below‐ground processes still appear poorly represented, which 
resulted in weakly constrained parameters and trait covariations in‐
consistent with the literature. These discrepancies are primarily at‐
tributable to a lack of ecophysiological knowledge that reflects the 
difficulty of studying below‐ground ecological processes. The root‐
ing system uses model‐specific parameters (Kroot) that are hardly 
comparable to measured functional traits.

5  | CONCLUDING REMARKS AND 
RECOMMENDATIONS

The approach presented in this study is a new and effective way to 
validate the processes implemented in TBMs, to provide a better defi‐
nition of vegetation response to climate (Liang et al., 2018), and could 
help to improve existing data assimilation frameworks (Arsenault et 
al., 2018; Kaminski et al., 2013; LeBauer, Wang, Richter, Davidson, & 
Dietze, 2013) by providing ecological constraints. The availability of 
continuous observations from eddy‐covariance flux measurements 
gives a unique opportunity to resolve the different components of the 
short‐ and long‐term variability of traits through this approach.

Our results show that optimized leaf‐related parameters align with 
plant trait theory and highlight the need to implement acclimation pro‐
cesses and trait‐based approaches in models instead of using constant 
parameters to reduce uncertainties in spatio‐temporal patterns of the 
modelled carbon fluxes. A first step would be to assess the behaviour 
of the model at the global scale when trait–climate relationships char‐
acterized in this study are implemented explicitly. In parallel, the rela‐
tionships highlighted in the present study might help in development 
or validation of new methods to simulate plant acclimation. Used in a 
prognostic way, this approach could enable the study of correlations 
at the canopy scale and assessment of the behaviour of trait‐related 
parameters that are difficult to observe experimentally.

Several known ecological properties, observed at the site/leaf 
scale, emerged from model–data assimilation. However, quantitative 
comparisons with observations were possible only for two of them, 
SLA and Lage, which are also the two most studied traits. This is 
mainly because TBMs use model‐specific parameters that cannot be 
compared directly with standard trait observations, but also because 
concomitant observations of functional traits, both in space and in 
time, are scarce in the literature. A recommendation to the TBM 
community would be to make use of parameters (and processes) that 
can be related directly to observations in order to unite vegetation 
model and functional traits (for instance, the use of the specific root 
length for below‐ground processes).

We argue that co‐located systematic and standardized trait obser‐
vations [starting with key traits related to phenology (SLA and LAI), pho‐
tosynthesis (Vcmax, Jmax and Topt), water transport (gs) and allocation 
(carbon:nitrogen ratio and shoot/root); Law et al., 2008] along with bio‐
metric data are needed at the FLUXNET sites or within other environ‐
mental observation networks, such as Integrated Carbon Observation 
System (ICOS) or National Ecological Observatory Network (NEON), if 
we seek to distinguish temporal and spatial components of trait vari‐
ability across biomes and climates. The creation of a FLUXNET trait da‐
tabase could improve our comprehension of trait acclimation and help 
us to disentangle the differences observed at regional and local scales, 
to improve the scaling up of processes from the leaf to the canopy/
ecosystem level and to calibrate/validate ecosystem models properly.
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