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Abstract Large spatial-scale effects of climate extremes on gross primary production (GPP), the largest
terrestrial carbon flux, are highly uncertain even as these extremes increase in frequency and extent.
Here we report the impacts of spring warming and summer drought in 2012 on GPP across the contiguous
United States (CONUS) using estimates from four GPP models: Vegetation Photosynthesis Model (VPM),
MOD17A2H V006, Carnegie-Ames-Stanford Approach, and Simple Biosphere/Carnegie-Ames-Stanford
Approach. VPM simulations are driven by Moderate Resolution Imaging Spectroradiometer, North American
Regional Reanalysis climate data, and C3 and C4 cropland maps from the United States Department of
Agriculture Cropland Data Layer data set. Across 25 eddy covariance flux tower sites, GPP estimates from
VPM (GPPVPM) showed better accuracy in terms of cross-site variability and interannual variability (R2 = 0.84
and 0.46, respectively) when compared to MOD17 GPP. We further assessed the spatial and temporal
(seasonal) consistency between GPP products and the Global Ozone Monitoring Experiment-2
solar-induced chlorophyll fluorescence over CONUS during 2008–2014. The results suggested that GPPVPM
agrees best with solar-induced chlorophyll fluorescence across space and time, capturing seasonal
dynamics and interannual variations. Anomaly analyses showed that increased GPP during the spring
compensated for the reduced GPP during the summer, resulting in near-neutral changes in annual GPP for
the CONUS. This study demonstrates the importance of assessing the impacts of different types and
timing of climate extremes on GPP and the need to improve light use efficiency models by incorporating
C3 and C4 plant functional types.

1. Introduction

Terrestrial ecosystems play a major role in the global carbon cycle, offsetting approximately 25–30% of the
CO2 emitted by human activities since the 1950s (Le Quéré et al., 2009). Gross primary production (GPP),
the amount of CO2 sequestered by vegetation through photosynthetic assimilation before accounting for
respiratory losses, is the largest component of the global terrestrial carbon flux (Beer et al., 2010).
Therefore, a small fluctuation in GPP could have significant impact on atmospheric CO2 concentrations.
However, the composition, structure, and functioning of terrestrial ecosystems are expected to be
substantially altered by increases in the duration or/and frequency of climate extremes such as droughts,
heatwaves, or intense precipitation events (Frank et al., 2015). It is a major challenge to understand and
project the response of terrestrial ecosystems to climate extremes (Reichstein et al., 2013). In particular,
droughts, together with the frequently co-occurring heatwaves, are among the most widespread natural
disasters and could have large impacts on annual GPP, ecosystem respiration (ER), and net carbon balance
(Frank et al., 2015; van der Molen et al., 2011).
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The impacts of climate extremes, especially heatwaves and droughts, on GPP have been thoroughly investi-
gated for selected events (Ciais et al., 2005; Parazoo et al., 2015; Wolf et al., 2016; Yuan et al., 2016). However,
how climate extremes affect the carbon cycle is still poorly known at the landscape, regional, and global
scales (Pan & Schimel, 2016). To investigate the impacts of climate extremes on GPP at ecosystem and land-
scape scales, three approaches have been separately or jointly applied: eddy covariance (EC) flux tower mea-
surements (von Buttlar et al., 2017; Welp et al., 2007), remote sensing data (Hilker et al., 2014), and
biogeochemical models (Zscheischler et al., 2014). Since the 1990s, the EC flux tower method has provided
directly observed evidence for the seasonal changes of terrestrial carbon fluxes, which increases our under-
standing of the underlying mechanisms of terrestrial ecosystem responses and their feedbacks to climate
extremes at the site scale (Reichstein et al., 2007). However, in situ EC sites are limited by their relatively
moderate-size footprints of observation and the number and distribution of FLUXNET sites are limited, mak-
ing it difficult to assess the impacts of climate extremes on the carbon cycle at regional, continental, and glo-
bal scales. The GPP data derived from EC flux towers (GPPEC), though limited in their spatial coverage, are
currently the best available data to validate GPP estimates from process-based and data-driven GPP models.
In contrast, optical and microwave remote sensing data provide larger scale insights into the vegetation
structure, including leaf area index and light absorption by canopy (J. M. Chen, 1996; Disney et al., 2006;
Ollinger, 2011). Recently, solar-induced chlorophyll fluorescence (SIF) data have been derived from
satellite-based observations to estimate GPP, as it is tightly linked with photosynthesis (Frankenberg et al.,
2011; Porcar-Castell et al., 2014). However, SIF has a very weak signal and accounts for about 2% of the total
light absorbed by vegetation. Satellite-retrieved SIF measurements have comparatively large amounts of
noise, and the recent SIF data products are often aggregated in temporal and spatial domains resulting in
a coarse spatial and temporal resolution (monthly, 0.5° × 0.5° for Global Ozone Monitoring Experiment-2,
GOME-2; Joiner et al., 2013). The coarse spatial resolution of SIF data products limits its application because
0.5° gridcells (~50 km at Equator) are often highly heterogeneous. A final approach uses terrestrial biosphere
models to estimate GPP and ER for a variety of ecosystems at multiple scales. However, the reliability of these
models is constrained by input data sets, model parameters, and model structures (Schaefer et al., 2012;
Schwalm et al., 2010). Hence, a synthesis and comparison of the different approaches can reveal the short-
comings of individual approaches and help to reach a more reliable assessment of the multiple-scale
responses of ecosystems to climate extremes (Pan & Schimel, 2016).

In 2012, the Contiguous United States (CONUS) experienced an abnormally warm spring and dry summer
(Hoerling et al., 2014; Knutson et al., 2013). Record-breaking temperatures were observed across 34 states
during spring and a severe summer drought followed, especially across the Great Plains and the Midwest
Corn Belt. The 2012 U.S. drought was reported as one of the worst droughts since 1988 and had a comparable
magnitude and spatial extent of those during the 1930s and 1950s (Hoerling et al., 2014; Rippey, 2015).
Impacts of this spring warming and summer droughts on terrestrial carbon fluxes in CONUS have been inves-
tigated, using the data from EC flux tower sites, GPP from the MOD17 data product, and net ecosystem pro-
duction (NEP) from CarbonTracker (CTE2014 and CTE2015; Wolf et al., 2016). They found that the losses of
NEP in the summer were offset by an unusually large increase of NEP in spring, resulting in a small gain of
annual NEP over CONUS (0.11 pg C). They also reported that the decrease in GPP during summer was much
larger than the increase of spring GPP, resulting in a moderate loss of annual GPP (�0.38 pg C) over CONUS in
2012. However, there are large uncertainties among the various GPP products (Schaefer et al., 2012); for
example, the MOD17 GPP product has large uncertainties in croplands (Turner et al., 2006; Xin et al., 2015).
Therefore, there is a need to evaluate various GPP models and their GPP data products, which will help us
to better understand and assess GPP responses to spring warming and summer drought in 2012.

In this study, we analyzed GPP data products from four GPP models: (1) the Vegetation Photosynthesis Model
(VPM; Xiao, Hollinger, et al., 2004; Xiao, Zhang, et al., 2004), which has been well validated at both site (Dong
et al., 2015; Doughty et al., 2018; Jin et al., 2013; Wagle et al., 2015) and regional scales (Zhang, Xiao, Jin, et al.,
2016; Zhang et al., 2017) in previous studies. In this study, we modified the model for cropland by separating
C3 and C4 crops with detailed Cropland Data Layer (CDL) data; (2) MOD17 (Running et al., 2004), which is also
used to evaluate the 2012 spring warming and summer drought impact on GPP in Wolf et al. (2016); (3)
Simple Biosphere/Carnegie-Ames-Stanford Approach (SiBCASA)-GFED4 (van der Velde et al., 2014), and (4)
CASA-GFED3 (van der Werf et al., 2006, 2010). SiBCASA-GFED4 and CASA-GFED3 models are biosphere mod-
els used in CarbonTracker Europe (CTE2014; van der Laan-Luijkx et al., 2017) and CarbonTracker (CT2014;
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Peters et al., 2007), respectively, which provided the prior biosphere carbon fluxes (NEP, GPP-Respiration) in
the two carbon tracker systems. We evaluated the GPP estimations from the four data sets with in situ GPP
data from EC flux tower sites and SIF data from GOME-2. The objectives of this study are threefold: (1) to
demonstrate the potential of differentiating C3 and C4 croplands for improving GPP estimates (using VPM
as an example) and validate the GPP estimates against FLUXNET data; (2) to quantify and understand the
spatial-temporal consistency of GOME-2 SIF data and GPP estimates from various models; and (3) to assess
the impacts of spring warming and summer drought on GPP at the pixel, biome, and continental scales.

2. Materials and Methods
2.1. VPM

We used the VPM model (Xiao, Hollinger, et al., 2004; Xiao, Zhang, et al., 2004) to estimate GPP from 2008 to
2014 over CONUS. We followed the original model framework but further differentiated between C3 and C4
croplands, since C3 and C4 crops have different maximum light use efficiencies (εmax). The National
Agricultural Statistics Service (NASS) CDLs from the United States Department of Agriculture (USDA) were
used to calculate the area percentages of C3 and C4 croplands within each 500 m pixel over individual years
(Boryan et al., 2011). According to the USDA report, the major C4 crop-types included corn, sorghum, sugar-
cane, and millet, and other crop-types were considered as C3 croplands. The GPP of each pixel was estimated
by area-weighted averaged GPP (equation (1)), which was derived from area fraction maps of C3 and C4 crop-
lands and MCD12Q1 land use data sets:

GPP ¼ fC3�εmax-C3�fC4�εmax-C4ð Þ�Tscalar�Wscalar½ ��APARchl; (1)

where fC3 and fC4 were the area fraction of C3 and C4 crops inside each cropland pixel, respectively. APARchl is
photosynthetic active radiation (PAR) absorbed by chlorophyll in the canopy and is estimated from enhanced
vegetation index (EVI; Huete et al., 1997) as following:

APAR chl ¼ 1:25� EVI–0:1ð Þ: (2)

This equation was modified from the previous model version (Xiao, Hollinger, et al., 2004; Xiao, Zhang, et al.,
2004) and has been applied in generating a global GPP product (Zhang et al., 2017). The coefficients 0.1 and
1.25 were used to adjust for sparsely vegetated or barren land and have been evaluated using the SIF data.

Themaximum light used efficiency values for C3 croplands (εmax-C3) and C4 croplands (εmax-C4) were specified
as 0.035 mol CO2 mol�1 PAR (~1.8 g·C·m�2·day�1·MJ�1·(PAR)), and 0.053 mol CO2 mol�1 (PAR)
(~2.7 g·C·m�2·day�1·MJ�1·(PAR)) (1.5 times larger than C3 types), respectively (Li et al., 2013). Tscalar and
Wscalar are the temperature and water regulation factor and calculated as

Tscalar ¼ T � Tminð Þ T � Tmaxð Þ
T � Tminð Þ T � Tmaxð Þ½ � � T � Topt

� �2 ; (3)

Wscalar ¼ 1þ LSWI
1þ LSWImax

; (4)

where T is the air temperature, derived from the NCEP/North American Regional Reanalysis (NARR) climate
data. Tmin, Tmax, and Topt represent the minimum, maximum, and optimum temperatures for photosynthesis,
respectively, which are biome-specific and assigned values as in Zhang, Xiao, Jin, et al. (2016). LSWImax is the
maximum land surface water index (LSWI) within the plant growing season, and we applied a temporal
smoothing method using nearby 4 years (2 years before and 2 years after) to eliminate potential bias
(Zhang et al., 2017).

2.2. Input Data Sets for VPM Simulations in CONUS During 2008–2014

Regional simulations of VPM model require climate, vegetation indices, and land cover data. Here we briefly
describe the input data sets used: (1) NCEP/NARR reanalysis meteorological data, (2) Moderate Resolution
Imaging Spectroradiometer (MODIS) surface reflectance and land cover data, and (3) NASS CDL data.
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2.2.1. NCEP/NARR Climate Data
The NCEP/NARR data were downloaded from (http://www.esrl.noaa.gov/psd). It contains meteorological
variables such as air temperature, precipitation, and downward shortwave radiation from 1979 to present
at a spatial resolution of 32 km and a temporal resolution of 3 hr. The original 3-hourly NARR data were
aggregated into daily data by calculating the maximum, mean, and minimum air temperature in a day
(°C) and the cumulative sum of downward shortwave radiation in a day. The resulting daily data were
further aggregated to 8-day intervals (following the MODIS 8-day temporal resolution) by calculating
the maximum, mean, and minimum temperature (°C) and the cumulative sum of downward shortwave
radiation within an 8-day period. We also interpolated these climate variables (32-km spatial resolution)
to 500 m using the same algorithm reported in a previous publication (Zhang, Xiao, Jin, et al., 2016).
As previous studies have shown, the NARR downward shortwave radiation is systematically overesti-
mated, so we adjusted it by applying a correction factor of 0.8 as proposed in a previous study
(Jin et al., 2015).
2.2.2. MODIS Surface Reflectance and Land Cover Product
The latest version of MODIS surface reflectance product, MOD09A1 V006, was used to calculate EVI (Huete
et al., 1997) and LSWI (Xiao, Zhang, et al., 2004). A temporal algorithm was applied to EVI to gap-fill the miss-
ing data or bad-quality data (Zhang, Xiao, Jin, et al., 2016).

The MODIS land cover product (MCD12Q1 V005) provides annual global maps of land cover at 500-m spatial
resolution during 2001–2013 (Friedl et al., 2010). We used the MCD12Q1 data at 2013 to represent year 2014.
The International Geosphere-Biosphere Programme land cover classification scheme in the MCD12Q1 is used
in this study (see Figure 1a). The International Geosphere-Biosphere Programme land cover map was then
used to derive biome-specific model parameter information for VPM simulations.
2.2.3. USDA NASS CDL Data Set
Annual national CDL data sets with a spatial resolution of 30 m were available for our study period
(2008–2014; https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php). The CDL data sets
contain over 100 cropland types and have very high classification accuracies for most crops (over 90%
accuracy for major crop types such as soybean and corn; Boryan et al., 2011). For the VPM simulations,
annual CDL data sets in 2008–2014 were aggregated to generate data layers at 500-m spatial resolution
that represent the ratio of C3 and C4 vegetation within individual 500-m gridcells for each year
(Figure 1b). The C4 cropland layer included corn, sorghum, sugarcane, and millet, and all other crops
were C3.

Figure 1. (a) Land cover map of Contiguous United States derived from MCD12Q1 in 2011 and (b) the C4 crop percentage within a 500-m Moderate Resolution
Imaging Spectroradiometer pixel derived from 30-m cropland data layer. Abbreviations denote the International Geosphere-Biosphere Programme land use
classes. WAT = Water; ENF = Evergreen Needleleaf Forest; EBF = Evergreen Broadleaf Forest; DNF = Deciduous Needleleaf Forest; DBF = Deciduous Broadleaf Forest;
MF = Mixed Forest; CS = Closed Shrublands; OS = Open Shrublands; WS = Woody Shrublands; SAV = Savannas; GRA = Grasslands; PW = permanent wetlands;
CRO = Croplands; UB = Urban and Built-up; MOS = Cropland/Natural vegetation mosaic; SNO = Snow and Ice; BAR = Barren or sparsely vegetated. In (a), we also
labeled the locations of the eddy covariance flux tower sites used in this study.
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2.3. Evaluation of GPP Estimates During 2008–2014 From VPM
2.3.1. GPP Data From EC Flux Tower Sites
EC data from the FLUXNET2015 data set were used to assess GPPVPM. We used 25 FLUXNET sites across
CONUS according to their data availability during 2008–2014, for which a summary about these sites is shown
in Table 1 and Figure 1a. The FLUXNET2015 data set used a standard workflow to process the data from the
EC flux tower sites (http://fluxnet.fluxdata.org/data/). The net ecosystem exchange of CO2 between
ecosystems and the atmosphere was gap-filled and then partitioned into GPP and ER using two methods,
the nighttime-based and the daytime-based approaches (Lasslop et al., 2010; Reichstein et al., 2005). We
calculated average daily GPPEC as the average of daily GPP estimated by the two methods. Then, we
calculated 8-day average GPPEC by aggregating the average daily GPPs. For each 8-day interval, only the
shortwave radiation and net ecosystem exchange observations with more than 75% of good quality, gap-
filled data were kept.

We evaluated the seasonal and cross-site performance of GPPVPM across biomes at 8-day and interannual
scales. We classified the land cover maps into four major types: forest (FOR), grassland (GRA), cropland
(CRO), and others (OTH) based on the MCD12Q1 landcover data. The evergreen needleleaf forest, evergreen
broadleaf forest, deciduous broadleaf forest, decidous needleaf forest, and mixed forest were lumped
together as forest. Grassland and cropland were the same classification scheme as MCD12Q1, while all the
other land cover types, such as savannas, shrublands, wetlands, and sparsed vegetated area, were considered
as OTH. To examine the ability of the model to capture the interannual variability of GPP, we compared the
anomaly of annual GPP for GPPEC and GPPVPM. Specifically, we compared GPPVPM and GPPMOD17 to the
anomaly between GPPEC in each site year and average GPPEC over all the site years for each site. The slope,
root mean square error (RMSE), and R2 of the regression models were used to evaluate the difference
between modeled and eddy covariance-derived GPP.
2.3.2. SIF Data From the GOME-2
SIF is a very small amount of energy emitted by plants and has been demonstrated to be highly
correlated with GPP (Guanter et al., 2014; Wagle et al., 2016; Zhang, Xiao, Jin, et al., 2016). In this study,
we used the monthly GOME-2 SIF data (V26) during 2008–2014 (Joiner et al., 2013). GOME-2 measure-
ments are in the ultraviolet and visible part of the spectrum (240–790 nm) with a high spectral resolution
between 0.2 and 0.5 nm and with the footprint size of 80 × 40 km2. SIF is retrieved using a principle com-
ponent analysis method in the 734 to 758 nm spectral window which overlaps the second peak of the SIF
emission. The retrievals are quality-filtered and aggregated into 0.5° grids and a monthly interval (Joiner
et al., 2013).

2.4. Inter-Comparison of GPP Estimates Among VPM and Other Three Models

We compared GPPVPM with the latest version of MOD17 GPP product (Running et al., 2004), MOD17A2H V006
(GPPMOD17) at both site and regional scales. GPPMOD17 is estimated at a spatial resolution of 500 m and a
temporal resolution of 8 days, which matches the spatial and temporal resolutions of GPPVPM. MOD17 is also
a LUE model and simulates GPP as the product of APARcanopy and light use efficiency (εg). εg is determined by
εmax and scalars that capture environmental limitations such as vapor pressure deficit (VPD) and air
temperature. εmax values are specific for different biome types (e.g., forest, shrub, grass, crop; Running
et al., 2004), but the product does not account for the differences of εmax between C3 and C4 croplands,
and εmax for croplands is substantially too low (Turner et al., 2006; Xin et al., 2015).

We also compared GPPVPM with GPP simulated by CASA-GFED3 (GPPCASA). CASA estimates Net Primary
Productivity (NPP) based on the light use efficiency method (Monteith, 1972, 1977) and further estimates
GPP with an assumption GPP = 2 * NPP. εmax for predicting NPP in CASA is set uniformly
(0.55 g·C·MJ�1·PAR) for different biomes (Potter et al., 1993, 2012; Randerson et al., 1996). The CASA-GFED3
GPP product used a calibrated εmax for the Midwestern region, which was derived from crop yield
observations, meteorological data, and remotely sensed FPAR (Lobell et al., 2002), and thus corresponds with
much higher GPP values (roughly 45%) over the Midwestern United States (Hilton et al., 2015). GPPCASA is
used to generate prior biogenic CO2 fluxes for the CarbonTracker system (Peters et al., 2007) at a spatial
resolution of 1° × 1.25° every 3 hr. We resampled the data into 1° × 1° and aggregated them into monthly
values in this study.
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The GPP estimates by the SiBCASA-GFED4 model (GPPSiBCASA; van der Velde et al., 2014) were also compared
with regional GPPVPM. GPPSiBCASA is used to generate prior biogenic CO2 fluxes in the Carbon Tracker Europe
system (van der Laan-Luijkx et al., 2017). SiBCASA combines the biophysical and GPP components from the
Simple Biosphere model (version 2.5) with the heterotrophic respiration (RH) from CASAmodel and calculates
the exchange of carbon, energy, and water at a temporal resolution of 10 min and at a spatial resolution of
1° × 1° (Schaefer et al., 2008; van der Velde et al., 2014). GPP is calculated for both C3 and C4 plants by imple-
menting a modified version of the C3 enzyme kinetic model (Farquhar et al., 1980) and the C4 photosynthesis
model (Collatz et al., 1992). The C4 distribution map used in SiBCASA is a static map with the mean C4 fraction
in global 1° × 1° grids (Still et al., 2003). The aggregatedmonthly GPPSiBCASA data are used for the comparison.

The impact of climate extremes on the GPP and SIF over the CONUS was evaluated using the four GPP data
sets and GOME-2 SIF data. The seasonal cycle and anomaly of GPPVPM, GPPMOD17, GPPSiBCASA, GPPCASA, and
SIF in the year 2012 were compared to that in the baseline year (the average of the year 2008, 2009, 2010,
2013, and 2014). The uncertainty range of the anomaly was calculated as the standard deviation of the anom-
aly between 2012 and selected different baselines. We randomly chose at least 3 years from the year 2008,

2009, 2010, 2013, and 2014 to calculate the baseline, so there are 16 options (C3
5 þ C4

5 + C5
5). As GPPSiBCASA,

GPPCASA, and SIF data sets have a spatial resolution of 1.0° × 1.0°, both GPPVPM and GPPMOD17 data sets
(500-m spatial resolution) were aggregated to 1.0° × 1.0°. The SIF data (0.5° × 0.5°) were also aggregated to
1.0° × 1.0°. We then used the area-weightedmethod to calculate annual total GPP (pg C per year) and average
SIF over CONUS.

3. Results
3.1. Seasonal Dynamics and Interannual Variation of GPP at Flux Tower Sites

GPPVPM agreed reasonably well with the seasonal dynamics and peak values of GPPEC at most sites (Figure 2).
The coefficients of determination (R2) varied from 0.32 (US-SRC site) to 0.96 (US-Ne2 and US-UMB). GPPVPM
showed very high accuracy for the cropland sites relative to GPPMOD17 (see Figure 2 and Table 1). At the
US-Ne1 and US-Ne2 maize sites, the regression between GPPVPM and GPPEC show a high R2 value (>0.95)
and a low RMSE value (<2.0 g·C·m�2·day�1), while the regression between GPPMOD17 and GPPEC shows a
moderate R2 value (~0.50) and a large RMSE value (7.0 g·C·m�2·day�1; Table 1).

At the 8-day scale, GPPVPM agrees better with GPPEC than does GPPMOD17, and GPPVPM effectively captures
the seasonal dynamics of GPP for all the four biomes (Figures 3a and 3b). For croplands, GPPMOD17 shows sig-
nificant underestimation with a slope of 0.37, while GPPVPM presents only slight underestimation with a slope
of 0.97. The improvement in GPPVPM is most prominent in these C4 cropland sites, such as US-Ne1 and US-
Ne2 (Figure 2 and Table 1), with peak value of GPPVPM and GPPEC in the growing season that are larger than
20 g·C·m�2·day�1, while that of GPPMOD17 is less than 10 g·C·m�2·day�1. Across all 25 sites, GPPVPM explains
about 84% of the seasonal dynamics of GPPEC with RMSE of 1.7 g·C·m2·day�1, while GPPMOD17 only explains
only about 55% with a RMSE value of 2.6 g·C·m�2·day�1.

The interannual variation of GPPVPM was best for croplands, followed by forest, grasslands, and other biomes
(Figure 3c). In addition, the anomaly of annual GPPVPM in croplands, grasslands, and forest biomes has much
higher consistency with GPPEC than does GPPMOD17 (Figures 3c and 3d). In other biomes (five sites), both
GPPVPM and GPPMOD17 had relatively low accuracy.

3.2. Spatial–Temporal Consistency Between Model-Based GPP and SIF Over CONUS in the Baseline
Years and Drought Year 2012

We compared the spatial distribution of maximum monthly mean GPP (g·C·m�2·day�1) from the four GPP
products and annual maximummonthly mean SIF in the baseline year and drought year 2012 at 1° × 1° reso-
lution (Figures 4a–4j). The maximum monthly mean GPP in 2008, 2009, 2010, 2013, and 2014 were used as
baseline year. The three GPP products (GPPVPM, GPPCASA, and GPPSiBCASA) and SIF show the peak photosynth-
esis in the Midwestern corn-belt region (Figures 4a–4j), which was consistent with the results reported by
Hilton et al. (2017). GPPMOD17 did not have such a spatial pattern for maximum monthly GPP because it
did not include higher photosynthetic capacity for C4 vegetation as did the other three models (VPM,
CASA, and SiBCASA). Compared to the baseline years, most of gridcells had lower GPP and SIF values
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during the drought in 2012. The correlation analysis (Figures 5a–5d and 5e–5h) showed that the maximum
monthly GPPVPM and SIF have the strongest linear relationship, followed by SIF/GPPSiBCASA, SIF/GPPCASA,
and SIF/GPPMOD17.

For annual total GPP, all four GPP products showed very similar spatial patterns with SIF, with relatively high
annual GPP (>1,500 g·C·m�2·year�1) in the forested Southeastern United States and low annual GPP in the
western regions where grasslands and deserts are dominant (Figures 4k–4t). In 2012, GPPVPM had a decrease
in the Midwestern corn-belt region and Great Plains and an increase in the eastern temperate forest region,
which is consistent with the spatial patterns of SIF. Annual GPPMOD17 had an obvious decrease in the
Midwestern corn-belt area but a slight increase in the eastern forest area in 2012. Annual GPPSiBCASA had
no significant differences between the baseline and drought year 2012. Annual GPPCASA had large increases
in both the Midwestern corn-belt region and temperate forest area. The correlation analysis (Figures 5i–5l)
showed that annual GPPVPM had a stronger linear relationship with SIF (R2 = 0.94) in the baseline years than
SIF/GPPSiBCASA (R

2 = 0.76), SIF/GPPCASA (R
2 = 0.75), and SIF/GPPMOD17 (R

2 = 0.70). We found similar results for
the drought year 2012 (Figures 5m–5p), which suggested that the models performed similarly during base-
line and drought years.

GPP estimates from all models had a high correlation with SIF (>0.9) in the wetter eastern region but a low
correlation in the dry western region, partly due to the very low SIF signal and relatively large signal-to-noise
ratio (Figures 6a–6h). The percentages of the total number of gridcells with a Pearson correlation coefficient
larger than 0.9 in the baseline year were ~65% for SIF/GPPVPM, ~55% for SIF/GPPCASA, ~50% for SIF/GPPMOD17,
and ~47% for SIF/GPPSiBCASA (Figures 6i–6l). The four GPP models had no obvious differences in simulating
the seasonal dynamics of GPP between the baseline year and drought year 2012 (Figure 6).

Figure 2. Seasonal dynamics and interannual variations of the tower-based GPP (GPPEC), GPP simulated by VPM (GPPVPM), and GPP simulated by MOD17
(GPPMOD17) at 25 flux sites at 8-day intervals (please note the different y axis scales). DBF = Deciduous Needleleaf Forest; ENF = Evergreen Needleleaf Forest;
GRA = grassland; CRO = cropland; EC = eddy covariance; VPM = Vegetation Photosynthesis Model; GPP = gross primary production.
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The histograms of the slope values (GPP = a × SIF + b) among these four GPP models differed substantially.
The slope values for the SIF/GPPVPM were concentrated between 4 and 7 g·C·mW�1·nm�1·sr�1 (~53% of all
gridcells), while that for SIF/GPPMOD17 were between 2 and 5 g·C·mW�1·nm�1·sr�1 (~60% of all gridcells).
The slope values for the SIF/GPPCASA and SIF/GPPSiBCASA were more evenly distributed than that of
SIF/GPPVPM. Sun et al. (2017) found the GPP-SIF relationship is consistent across different vegetation types
when comparing SIF with GPPEC, but it is more divergent when comparing SIF with modeled GPP because
of the systematic GPP biases. The GPP-SIF slope for the four GPP products in this study is also divergent over
CONUS, but the VPM GPP-SIF slope is more convergent than the other three models (Figure 7).

3.3. Spatial–Temporal Consistency of GPP and SIF Anomalies Over CONUS in 2012

To evaluate the impacts of spring warming and summer drought on GPP in 2012, we compared the anoma-
lies of GPP from GPPVPM, GPPMOD17, GPPSiBCASA, and GPPCASA to the anomalies of SIF in the spring, summer,
and the entire year at 1° × 1° (latitude and longitude) resolution (Figure 8). The anomalies of GPP and SIF were
calculated as the differences between year 2012 and the baseline year. The baseline year was calculated as

Figure 3. Comparison of GPPEC, GPPVPM, and GPPMOD17 across eddy covariance flux tower sites (FO, GRA, CRO, and OTH)
during 2008 to 2014: (a) 8-day GPPEC and GPPVPM, (b) 8-day GPPEC and GPPMOD17, (c) anomaly of annual GPPEC and
GPPVPM, and (d) anomaly of annual GPPEC and GPPMOD17. FOR = forests; CRO = croplands; GRA = grasslands; OTH = other
types. When all the sites were combined, the relationship between GPPVPM and GPPEC was y = 0.92x (R2 = 0.84,
RMSE = 1.7 g·C·m�2·day�1) at the 8-day time scale, while the relationship between GPPMOD17 and GPPEC was y = 0.68x
(R2 = 0.55, RMSE = 2.6 g·C·m�2·day�1) at the 8-day time scale. At the interannual scale, the relationship between the
annual anomaly of GPPVPM and GPPEC is y = 0.73x (R2 = 0.48), while the relationship between the annual anomaly of
GPPMOD17 and GPPEC was y = 0.45x (R2 = 0.37). GPP = gross primary production; VPM = Vegetation Photosynthesis Model;
EC = eddy covariance; RMSE = root mean square error.
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the average of 2008, 2009, 2010, 2013, and 2014. Geographically, the anomaly of all the four GPP products
and SIF showed very interesting spatial patterns at the seasonal and annual scales (Figure 8).

In the spring season, the middle and eastern CONUS experienced an increase in GPP anomaly while western
CONUS experienced a decrease, which was consistent with the spatial pattern of SIF anomaly (Figures 8a–8e).
The magnitudes and spatial extent of GPP anomaly vary among the four GPP models. For GPPVPM and
GPPMOD17, the large increases in GPP (larger than 100 g·C·m�2·season�1) occurred mostly in the Southern
Great Plains and part of the Midwestern corn-belt region. For GPPCASA, large increases in GPP occurredmostly
in the Midwestern and Southeast regions. The correlation analyses between GPP products and SIF
(Figures 9a–9d) showed that GPPVPM and SIF had the strongest linear relationship (R2 = 0.67), followed by
SIF/GPPMOD17 (R

2 = 0.58), SIF/GPPCASA (R2 = 0.56), and SIF/GPPSiBCASA (R2 = 0.48).

In the summer season, most regions in CONUS experienced decreased GPP and SIF associated with drought
(Figures 8f–8j). The Great Plains and Midwestern corn-belt regions experienced the largest reductions in GPP
(larger than 150 g·C·m�2·season�1). The spatial extents of decreased GPP in GPPVPM and GPPMOD17 were
greater than those in GPPSiBCASA and GPPCASA. GPPVPM, GPPCASA, and GPPSiBCASA displayed strong increases
in the southeast regions, which was consistent with the spatial pattern of SIF anomaly. Overall, GPPVPM
(Figures 9e–9h) agreed best with SIF (R2 = 0.71), followed by SIF/GPPCASA (R2 = 0.50), SIF/GPPMOD17

(R2 = 0.45), and SIF/GPPSiBCASA (R2 = 0.19).

Figure 4. Spatial distribution of maximum monthly mean GPP (a–d; f–i) from GPP models (VPM, MOD17, SiB-CASA, and CASA) and maximum monthly mean SIF
(e, j) from GOME-2 (e, j) in the baseline years (the average of 2008, 2009, 2010, 2013, and 2014) and drought year 2012, and spatial distributions of annual GPP
(k–n; p–s) from GPP models and annual mean SIF from GOME-2 (o, t) in the baseline years and drought year 2012. VPM = Vegetation Photosynthesis Model;
CASA = Carnegie-Ames-Stanford Approach; SiBCASA = Simple Biosphere/CASA; GOME-2 = Global Ozone Monitoring Experiment-2; SIF = solar-induced chlorophyll
fluorescence; GPP = gross primary production.
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For the entire year, annual GPPVPM, GPPMOD17, and GPPSiBCASA mainly decreased in the western United States
and corn-belt regions, and annual GPP increased mainly in the eastern and southern forest area, which was
consistent with the spatial pattern of SIF (Figures 8k–8o). Only GPPCASA reported strong increases in GPP in
the corn-belt region. The correlation analysis showed that none of the four GPP products agreed well with
the spatial pattern of annual mean SIF anomaly at the annual scale, with R2 values varying from 0.14 to
0.27 (Figures 9i–9l).

When aggregated over the entire CONUS by season, the four GPP products and SIF clearly showed an
increase in GPP in the spring and a reduction in the summer, indicating the warm spring and droughty sum-
mer had opposite effects on GPP (Figure 8 and Table 2). The spring warming led to an increase in GPP by
0.25–0.48 pg C per season, where GPPCASA showed the largest increase and GPPSiBCASA showed the least.
During the summer, the four GPP products showed a decrease in GPP by 0.21–0.42 pg C per season, where
GPPCASA decreased the most and GPPSiBCASA decreased the least. The annual total GPPVPM and GPPCASA had
an increase of 0.11 and 0.18 pg C per year, while the annual total GPPMOD17 and mean SIF had a decrease of
0.12 pg C per year and 0.12 mW·m�2·nm�1·sr�1. The annual total GPPSiBCASA remained neutral in 2012.

Figure 5. Relationships between the maximum monthly mean GPP (a–d; e–h) from GPP models (VPM, MOD17, SiBCASA,
and CASA) and monthly mean SIF from Global Ozone Monitoring Experiment-2 for each pixel across Contiguous United
States during the baseline years (the average of 2008, 2009, 2010, 2013, and 2014) and drought year 2012, and relationship
between total annual GPP (i–l; m–p) from GPP models (VPM, MOD17, SiBCASA, and CASA) and mean annual SIF from
Global Ozone Monitoring Experiment-2 in the baseline year (the average of 2008, 2009, 2010, 2013, and 2014) and drought
year 2012 (all of the relationships are significant with p < 0.001). GPP = gross primary production; VPM = Vegetation
Photosynthesis Model; CASA = Carnegie-Ames-Stanford Approach; SiBCASA = Simple Biosphere/CASA; SIF = solar-induced
chlorophyll fluorescence.
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Figure 6. Spatial distribution of Pearson correlation coefficient between monthly solar-induced chlorophyll fluorescence and gross primary production products
from VPM, MOD17, SiBCASA, and CASA for baseline year (the average of 2008, 2009, 2010, 2013, and 2014) and drought year 2012, and the corresponding fre-
quency distribution (black and red bars) and accumulative frequency (black and red dashed lines) of the Pearson correlation coefficient for the four models in the
baseline years and 2012. VPM = Vegetation Photosynthesis Model; CASA = Carnegie-Ames-Stanford Approach; SiBCASA = Simple Biosphere/CASA.

Figure 7. Spatial distribution of the regression slope between monthly SIF and GPP products from VPM, MOD17, SiBCASA, and CASA for the baseline year (the aver-
age of 2008, 2009, 2010, 2013, and 2014) and drought year 2012, and the corresponding frequency distribution (black and red bars) and accumulative frequency
(black and red dashed lines) of the Pearson correlation coefficient for the four models in the baseline years and 2012. VPM = Vegetation Photosynthesis Model;
CASA = Carnegie-Ames-Stanford Approach; SiBCASA = Simple Biosphere/CASA; GPP = gross primary production; SIF = solar-induced chlorophyll fluorescence.
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3.4. Impacts of Spring Warming and Summer Drought on GPP by Biomes in 2012

To quantify the impact of spring warming and summer drought on GPP across biomes, we calculated total
GPP from the four models for the four main biomes. In the spring of 2012, all four models showed increased
GPP for the four biomes (Figure 10 and Table 3), and the nonforest experienced a stronger increase in GPP
than forest. In the four models, CASA showed a larger increase in GPP in the spring than other three models
in the four biomes, while SiBCASA showed the lowest increase in GPP over most biomes. For the drought
summer, all four models showed strong decreases in GPP, and the grassland and cropland experienced
the strongest decrease, followed by other biomes. Among the four models, MOD17 showed the largest
decrease in GPP in the summer, while SiBCASA showed the least decrease. For the entire year, grassland
and cropland experienced a decrease in GPP, while forest and other biomes experienced an increase or
no change.

4. Discussion
4.1. Improving GPP Estimates of C3 and C4 Croplands

Accurate estimation of cropland GPP is important for food production and security. The MOD17 GPP data
products have been widely used for crop studies (Guan et al., 2016; Xin et al., 2015). However, several

Figure 8. Spatial-temporal anomalies of GPPVPM, GPPMOD17, GPPSiBCASA, GPPCASA, and SIF during spring, summer, and annually across Contiguous United States
in 2012 relative to the baseline (2008, 2009, 2010, 2013, and 2014). Seasonal cycle and anomaly of total monthly GPPVPM, GPPMOD17, GPPSiBCASA, GPPCASA, and SIF
in 2012 relative to the baseline. Numbers shown in the last row of graphs are the anomaly of total GPP in spring (March–May), summer (June–August), fall
(September–November), and the whole year (January to December). GPP = gross primary production; VPM = Vegetation Photosynthesis Model; CASA = Carnegie-
Ames-Stanford Approach; SiBCASA = Simple Biosphere/CASA; GOME-2 = Global Ozone Monitoring Experiment-2; SIF = solar-induced chlorophyll fluorescence.
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studies have reported that the MOD17 data product substantially underestimates GPP in croplands. One
reason is that εmax for croplands in the MOD17 model is too low (~1.04 g·C·MJ�1; Turner et al., 2006; Wagle
et al., 2016; Xin et al., 2015). Site-level studies have indicated that the typical εmax for C3 crops range from
1.43 to 1.96 g·C·MJ�1 (T. Chen et al., 2011; Kalfas et al., 2011; Yuan et al., 2015) and εmax for C4 crops range
from 2.25 to 4.06 g·C·MJ�1 (Xin et al., 2015; Yuan et al., 2015). Several model comparison studies have also
showed that both process-based GPP models and LUE models have poor performance when estimating
GPP in croplands (Schaefer et al., 2012; Verma et al., 2014). Recently, Guanter et al. (2014) used GOME-2 SIF
to estimate GPP in croplands using the linear relationship between SIF and tower-based GPP at flux tower
sites, and they found these SIF-based GPP estimates in croplands were 50–60% higher than GPP estimates
from the ecosystem models over the U.S. Corn Belt. In this study, our εmax values for C3 croplands
(1.80 g·C·MJ�1) and C4 croplands (2.7 g·C·MJ�1) were based on previous site-level studies (Li et al., 2013;

Figure 9. Correlation between the anomaly of seasonal/annual GPP from GPPmodels (VPM, MOD17, SiBCASA, and CASA) and the anomaly of seasonal/annual mean
SIF from Global Ozone Monitoring Experiment-2 across Contiguous United States during the baseline years (the average of 2008, 2009, 2010, 2013, and 2014)
and drought year 2012 (all of the correlations are significant with p < 0.001). GPP = gross primary production; VPM = Vegetation Photosynthesis Model;
CASA = Carnegie-Ames-Stanford Approach; SiBCASA = Simple Biosphere/CASA; SIF = solar-induced chlorophyll fluorescence.

Table 2
The Anomaly of Total GPP Between 2012 and the Baseline (the Average of 2008, 2009, 2010, 2013, and 2014) in Spring (March–
May), Summer (June–August), Fall (September–November), and the Whole Year

Anomaly of
GPP (Pg C) VPM MODIS CASA SiBCASA

Anomaly of SIF
(mW·m�2·nm�1·sr�1)

Spring 0.41 ± 0.04 0.30 ± 0.03 0.48 ± 0.05 0.25 ± 0.03 0.31 ± 0.05
Summer �0.27 ± 0.05 �0.42 ± 0.02 �0.26 ± 0.06 �0.21 ± 0.04 �0.28 ± 0.05
Annual 0.11 ± 0.08 �0.12 ± 0.02 0.18 ± 0.10 0.01 ± 0.08 �0.12 ± 0.10

Note. The uncertainty range of the anomaly was calculated as the standard deviation of the anomaly between 2012 and
different baselines. We randomly chose at least 3 years from the year 2008, 2009, 2010, 2013, and 2014 to calculate the
baseline, so there are 16 options (C3

5 þ C4
5 + C5

5 ). GPP = gross primary production; VPM =Vegetation Photosynthesis
Model; MODIS = Moderate Resolution Imaging Spectroradiometer; CASA = Carnegie-Ames-Stanford Approach;
SiBCASA = Simple Biosphere/CASA; SIF = solar-induced chlorophyll fluorescence.
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Xin et al., 2015). The improved ability of VPM to capture the seasonal dynamics and interannual variability of
croplands was partly attributed to more appropriate choices of εmax values.

Another reason for the large error in estimating cropland GPP by the MOD17 and other models can be attrib-
uted to the fact that we have very limited knowledge on the spatial distribution of the C3 and C4 croplands
within individual 500-m MODIS pixels and their temporal dynamics over years (Reeves et al., 2005; Still et al.,
2003; Wang et al., 2013). However, in this study we used the fine-resolution, annual CDL cropland maps. The
results demonstrated the potential of annual C3/C4 cropland maps at high spatial resolution to improve crop-
land GPP estimates from the individual pixel to country-wide scales. Although there are several existing glo-
bal C3/C4 maps, they are relatively coarse in spatial resolution and produced only for a specific year. An early
study developed a static C3/C4 fraction map with a spatial resolution of 1° × 1° by defining the favorable cli-
mate zones for C3/C4 and combing the global spatial distribution of crop fractions and national harvest area

Figure 10. Seasonal cycle and anomaly of total monthly GPPVPM, GPPSiBCASA, GPPCASA, and GPPMOD17 in forest, grass-
land, cropland and others. Numbers shown in the bottom panel in each row are the anomalies of total GPP for each
biome in spring (March–May), summer (June–August), fall (September–November), and the whole year. CASA = Carnegie-
Ames-Stanford Approach; SiBCASA = Simple Biosphere/CASA; VPM = Vegetation Photosynthesis Model; GPP = gross pri-
mary production.
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data for major crop types (Still et al., 2003). Another study developed a
global distribution map of croplands and pastures at a 5 by 5 min
(~10 km) spatial resolution in 2000 by combining agricultural inventory
data and satellite-derived land cover data (Ramankutty et al., 2008).
Recently, several studies made very limited progress in mapping C3 and
C4 plants (both croplands and grasses) when using remote sensing data
and simple algorithms (Foody & Dash, 2007; Wang et al., 2013). The devel-
opment of CDL data sets include the use of satellite-based imagery, super-
vised image classification methodology, and numerous high-quality
ground truth data collected to help determine the multispectral rules from
time-series imagery that best predicted the land cover category. For grass-
lands, it was reported that there was a strong linear relationship between
the percentage of C3 grass and the season-long cumulative vegetation
index (Foody & Dash, 2007). These phenological features and time-series
MODIS data were used to classify C3 and C4 grasslands in the Great
Plains (Wang et al., 2013). Given the importance of C3 and C4 plant function
types in estimating GPP, it is important for the remote sensing community
to increase its effort in mapping C3 and C4 croplands and grasslands at site,
regional, and global scales.

4.2. The Timing and Location of Climate Extremes and Their Impacts
on Terrestrial Ecosystems

Climate extremes such as heatwaves and droughts can reduce vegetative
growth, trigger large-scale tree mortality, and turn terrestrial ecosystems
from carbon sinks into sources (Ciais et al., 2005; Yuan et al., 2016). The
warm spring and hot and dry summer in 2012 over CONUS offered a

unique opportunity to investigate several major questions on the impacts of climate extremes on terrestrial
carbon cycle at the regional and continental scales (He et al., 2018; Sippel et al., 2016; Wolf et al., 2016). Many
studies have reported that terrestrial ecosystems in CONUS have served as carbon sinks in recent decades
(Hurtt et al., 2002; Pacala et al., 2001), ranging from 0.30 to 0.58 pg C per year during the 1980s and 1990s,
which accounts for 30% of fossil-fuel emissions from the United States. Wolf et al. (2016) analyzed MOD17
GPP data and NEP data from CTE2014 during 2001–2012 and reported that the increase of NEP in the spring
compensated for the loss of NEP in the summer, which resulted in a small carbon sink (0.11 pg C per year in
2012) for CONUS. This result suggests the importance of assessing the impacts of climate extremes, which
depend on timing, duration, and location, on terrestrial carbon budgets at the annual and continental scales
(Sippel et al., 2017; von Buttlar et al., 2017).

Wolf et al. (2016) analyzed MOD17 GPP data in 2001–2012 and reported that GPP loss in summer in 2012 over
CONUS was twice as large as the increase in GPP in the spring of 2012, resulting in a large annual loss of GPP
(�0.38 pg C). Though we used a different baseline, our analysis of MOD17 GPP data in 2008–2014 also shows
that the decrease in GPP in the summer of 2012 was substantially larger than the increase in GPP in the spring
of 2012, resulting in large annual loss of GPP (�0.12 pg C; Figure 8). However, the results from GPPVPM,
GPPSiBCASA, and GPPCASA showed that the GPP increase in the spring is close or slightly larger than GPP loss
in the summer of 2012, the annual GPP anomaly ranging from 0.01 (GPPSiBCASA), to 0.11 (GPPVPM), to 0.18 pg C
(GPPCASA), while the GOME-2 SIF anomaly showed a decrease in 2012 (Figure 7). The differences in modeling
GPP responses to spring warming and summer drought among these four models are likely to affect our
understanding of the responses of ER to spring warming and summer drought. As NEP is the sum of GPP (car-
bon gains) and ER (carbon losses), the large decrease in GPP (e.g., �0.38 pg C per year in 2012, GPPMOD17)
from the previous study (Wolf et al., 2016) implied a slightly larger decrease in ER, which could then result
in a small carbon sink (0.11 pg C per year in 2012). In addition, since CASA-GFED3 and SiBCASA-GFED4 are
the biosphere models used by CarbonTracker (CT2014) and CarbonTracker Europe (CTE2014) to generate
prior biosphere carbon fluxes, the spatial-temporal differences in GPP distribution, magnitude, and anomaly
from these twomodels are likely to affect CarbonTracker and CarbonTracker Europe outputs. Previous studies
have reported that atmospheric CO2 inversions are sensitive to the land surface prior fluxes, especially at fine

Table 3
The Anomaly of Total GPP Estimates From VPM, MOD17, SiBCASA, and CASA
for Different Biomes Between 2012 and the Baseline (the Average of 2008,
2009, 2010, 2013, and 2014) in Spring (March–May), Summer (June–August),
Fall (September–November), and the Whole Year

Anomaly of GPP (Pg C) Spring Summer Fall Annual

VPM Forest 0.07 �0.01 0.00 0.07
Grassland 0.10 �0.15 �0.04 �0.07
Cropland 0.09 �0.07 �0.05 �0.02
Others 0.13 �0.04 0.00 0.11

MOD17 Forest 0.04 �0.05 �0.01 0.00
Grassland 0.07 �0.14 �0.04 �0.10
Cropland 0.08 �0.15 �0.04 �0.10
Others 0.08 �0.11 �0.01 0.00

SiBCASA Forest 0.04 �0.01 �0.01 0.03
Grassland 0.06 �0.06 �0.04 �0.03
Cropland 0.08 �0.10 �0.04 �0.05
Others 0.07 �0.04 �0.02 0.05

CASA Forest 0.07 0.00 �0.01 0.08
Grassland 0.11 �0.15 �0.04 �0.07
Cropland 0.13 �0.06 �0.04 0.03
Others 0.15 �0.04 �0.01 0.13

Note. Forest: evergreen needleleaf forest, evergreen broadleaf forest,
deciduous broadleaf forest, deciduous needleleaf forest, mixed forest;
Grassland: grassland; Cropland: cropland; Others: closed shrublands, open
shrublands, savannahs, woody savannahs, permanent wetlands, crop-
land/natural vegetation mosaics. GPP = gross primary production;
VPM = Vegetation Photosynthesis Model; CASA = Carnegie-Ames-
Stanford Approach; SiBCASA = Simple Biosphere/CASA.
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scales and the areas with sparse or no available observations (Peylin et al., 2013; Zhu et al., 2014). Therefore,
methods to incorporate more reliable carbon flux estimates from atmospheric CO2 inversions is critically
needed for us to better understand the terrestrial carbon cycle.

4.3. Differential Responses to Climate Extremes Across Biomes

Numerous studies have reported the negative impacts of high temperature and droughts on vegetation pro-
ductivity (Ciais et al., 2005; Welp et al., 2007; Wolf et al., 2016; Yuan et al., 2016). Short-term drought or heat-
waves lead to stomatal closure, membrane damage, and disruption of photosynthetic enzyme activities, all of
which reduce GPP. If plants experience continuous drought, they may respond to drought stress by structural
or physiological adjustments such as decreased leaf area index, changes in the root-shoot ratio, or changes in
leaf angle (Frank et al., 2015). But different species have adopted different strategies to deal with water stress.
These strategies can be broadly classified as dehydration tolerance or dehydration avoidance (Bacelar et al.,
2012). Plants with a dehydration tolerance strategy usually grow rapidly when water is available but will
senesce and/or become dormant during drought. Plants with a dehydration avoidance strategy tend to grow
more slowly and maintain greenness during drought by increasing water extraction from the soils and redu-
cing water loss from transpiration. Our study showed that the impacts of spring warming and summer
drought on the change in GPP varied across biomes (Figure 10). This change was not only due to the char-
acteristics (timing, magnitude) of the heatwaves and drought at specific regions (Figure 11), but also
species-specific plant drought responses and strategies (von Buttlar et al., 2017; Wolf et al., 2013). Our results
show that grasslands experienced the largest reduction in GPP while forests had the largest increase. This dif-
ference may be explained by the observation that grasslands are drought sensitive and more susceptible to
heatwaves and droughts as they have less accessibility to soil water (shallow roots) and higher turnover rates
(Frank et al., 2015). Trees usually have deeper roots and better access to soil water, thus forests are considered
to be less affected by heatwaves and drought (Frank et al., 2015; van der Molen et al., 2011; Zhang, Xiao,
Zhou, et al., 2016). Grasslands occur in the most severe drought-affected areas, while most forests are in
the northwestern and eastern part of CONUS, which were either not affected by the 2012 drought or were

Figure 11. Drought-affected areas over Contiguous United States on 14 August 2012.
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classified as abnormally dry (D0) by the U.S. drought monitor (Figure 11). Cropland systems are different from
natural systems by the frequent human intervention (e.g., irrigation or changing planting date).
Consequently, the impacts of climate extremes on croplands are expected to be highly modulated by human
management (Lobell et al., 2012; van der Velde et al., 2010). However, cropland over the Corn Belt, the most
important crop area in the United States, is mainly rainfed (Leng et al., 2016), leading to a similar GPP
response to drought for cropland and grasslands.

4.4. Uncertainties and Remaining Issues

The uncertainty of ecosystem models remains a challenge for carbon cycling research. Extreme climate
events were found to dominate the global interannual variability of GPP (Zscheischler et al., 2014). At present,
most ecological models do not accurately represent the responses of major ecosystem processes to climate
extremes and do not accurately track the interannual variability of GPP (Reichstein et al., 2013). For example,
previous studies indicated that improving GPP estimates for most models requires better representation of
water stress effects on photosynthesis (Schaefer et al., 2012; Verma et al., 2014; Yuan et al., 2014). In this study,
VPM, MOD17, and CASA are all light use efficiency models, but use different water regulation scalars. VPM
uses a water-related vegetation index (LSWI) as the water constraint, MOD17 uses VPD, and CASA uses the
evapotranspiration supply/demand ratio (actual evapotranspiration/potential evapotranspiration). LSWI is
found to be a good indicator of soil moisture when taking all the biomes into consideration (Zhang et al.,
2015). However, it may not work well for forested areas because of the lower spectral sensitivity to water
stress (Sims et al., 2014). VPD represents the impacts of atmospheric dryness on vegetation photosynthesis
because stomatal conductance changes with VPD. However, soil moisture also plays an important role in reg-
ulating GPP by affecting leaf cell turgor pressure or stomatal conductance, thereby directly affecting photo-
synthesis (Hashimoto et al., 2013; Leuning et al., 2005). The evapotranspiration ratio requires well simulated
hydrologic fluxes in soils where additional information (e.g., soil texture, soil/rooting depth) is required. This
information is usually not easy to collect and comes with uncertainties. Therefore, more effort is needed to
quantify the model uncertainties and improve model structure.

Since SIF can be directly observed from space, has a very good relationship with GPP (Guanter et al., 2014;
Wagle et al., 2016; Zhang, Xiao, Jin, et al., 2016), and is a good indicator of agricultural drought (Sun et al.,
2015), we used SIF as a reference to which we compared the impacts of spring warming and summer
droughts on vegetation photosynthesis. However, we acknowledge that GOME-2 SIF has some uncertainties,
especially in the western part of CONUS (Figure 6) due to the relatively large signal-to-noise ratio (Zhang,
Xiao, Jin, et al., 2016). SIF retrievals from recently launched satellites (OCO-2, Sentinel-5 Precursor, and
FLEX-Fluorescence Explorer) with higher spatial resolutions and observations tailored for SIF may improve
our understanding of the impacts of climate extremes on vegetation.

In this study, we only considered the impacts of climate extremes on terrestrial ecosystems within a year.
However, droughts may affect terrestrial ecosystems across months or even years, depending upon plant
functional types (Frank et al., 2015; von Buttlar et al., 2017). Extreme events could cause plant functional loss,
changes in the community structure of ecosystems, increased wildfires, and pest and pathogen outbreaks, all
which may necessitate a long recovery period (van der Molen et al., 2011). Further, species’ response to cli-
mate extremes vary widely, and some impacts could persist long after extreme events (Rammig et al.,
2014). Analysis of the responses of terrestrial ecosystems to climate extremes should be conducted over
the next few years.

5. Conclusions

The spring warming and summer drought of 2012 across CONUS had substantial impacts on the terrestrial
carbon cycle and offered a unique opportunity to investigate the responses of photosynthesis (GPP) and
respiration processes at large scales. We presented an improved VPM model that incorporates C3 and C4
croplands and can better capture the seasonal dynamics and interannual variation of GPP than the
MOD17 product when these models are compared to GPPEC data from EC flux tower sites. Spatial-temporal
comparisons among GOME-2 SIF, GPPMOD17, and GPPVPM products during 2008–2014 showed strong consis-
tency between GOME-2 SIF and GPPVPM data products. Anomaly analyses of (1) annual GPP from four models
(VPM, MOD17, SiBCASA, and CASA) and (2) GOME-2 SIF data between the baseline years (2008, 2009, 2010,
2013, 2014) and drought year 2012 suggested that increased GPP during the warm spring compensated

10.1029/2018JG004484Journal of Geophysical Research: Biogeosciences

WU ET AL. 3157



for decreased GPP during the dry and hot summer, resulting in close to net neutral changes in annual GPP.
The results from this study clearly highlight the importance of assessing the impacts of co-occurring climate
extremes at seasonal and annual scales over large spatial domains. Our results demonstrate the need to
further improve GPP models, which could increase the accuracy and reduce uncertainties in GPP estimates
of terrestrial ecosystems.
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