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Estimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many
climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing
coarse-resolution ET products and point-based field measurements. However, there is large uncertainty
among existing ET products from Landsat that limit their application. This study presents a simple Taylor
skill fusion (STS) method that merges five Landsat-based ET products and directly measured ET from eddy
covariance (EC) to improve the global estimation of terrestrial ET. The STS method uses a weighted aver-
age of the individual ET products and weights are determined by their Taylor skill scores (S). The valida-
tion with site-scale measurements at 206 EC flux towers showed large differences and uncertainties
among the five ET products. The merged ET product exhibited the best performance with a decrease in
the averaged root-mean-square error (RMSE) by 2–5 W/m2 when compared to the individual products.
To evaluate the reliability of the STSmethod at the regional scale, the weights of the STS method for these
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Eddy covariance
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five ET products were determined using EC ground-measurements. An example of regional ET mapping
demonstrates that the STS-merged ET can effectively integrate the individual Landsat ET products. Our
proposed method provides an improved high-resolution ET product for identifying agricultural crop
water consumption and providing a diagnostic assessment for global land surface models.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction Evapotranspiration with Internalized Calibration (Allen et al.,
The latent heat of evapotranspiration (ET), which is the sum of
the heat flux from the earth’s surface to the atmosphere for soil
evaporation, vegetation transpiration and evaporation of water
intercepted by plant canopies, plays an important role in many
geophysical applications (e.g., climatic forecasting, crop yield fore-
casting and agricultural water resource management) (Jiménez
et al., 2011; Kool et al., 2014; Liang et al., 2010; Wang and
Dickinson, 2012; Zhang et al., 2009). ET exhibits strong heterogene-
ity across the land surface due to complex environmental controls
and biophysical feedback processes (Kalma et al., 2008; Mallick
et al., 2009; Yao et al., 2014; Yuan et al., 2010). Large-scale net-
works of direct biosphere-atmosphere measurements with the
eddy covariance (EC) method have been widely used for site-
scale studies. However, such local ET observations cannot repre-
sent ET at regional to global scales (Baldocchi et al., 2001; Choi
et al., 2009; Kustas and Anderson, 2009; Liu et al., 2016; Xu
et al., 2011; Xu et al., 2016;Yao et al., 2015).

Remote sensing has provided us with an effective way to obtain
spatially and temporally continuous ET data at a regional scale.
Currently, there are various moderate spatial resolution satellite-
based ET products available, such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) product (MOD16), which has
1 km and 8 day of spatial and temporal resolution, respectively
(Mu et al., 2007, 2011) or the EUMETSAT Satellite Application Facil-
ity on Land Surface Analysis (LSA-SAF) product (LSA-SAF MSG)
(Ghilain et al., 2011, 2012) with 5 km spatial resolution and daily
temporal resolution. However, validation results with direct mea-
surements indicate that the MOD16 and LSA-SAF MSG ET products
tend to consist of uncertainties at most FLUXNET flux tower sites
(Chen et al., 2014; Hu et al., 2015; Kim et al., 2012). Other ET prod-
ucts (including reanalysis and data assimilation datasets), such as
the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-40 reanalysis (Uppala et al., 2005) and the Global
Land Data Assimilation System (GLDAS) datasets, have high tempo-
ral resolution (daily) but rather coarse spatial resolution (�0.5�)
(Kumar et al., 2006; Rodell et al., 2004). This relative coarse spatial
resolution of global ET products limits the representation of the
heterogeneous terrestrial biosphere.

The Landsat multispectral data record from the Thematic Map-
per (TM) and the Enhanced Thematic Mapper Plus (ETM+) are valu-
able data sources for producing ET product at rather high spatial
resolution (�30 m) (Ju and Roy, 2008). They can also bridge the
gap between existing coarse-resolution ET products and point-
based field measurements and be used to validate coarse-
resolution data. Various Landsat-based ET algorithms, roughly clas-
sified as VNIR (visible and near infrared)-based remote sensing
methods and TIR (thermal infrared)-based remote sensing meth-
ods, have been developed to estimate regional ET (Kalma et al.,
2008; Li et al., 2009). VNIR-based remote sensing methods include
some empirical/statistical models (Glenn et al., 2008; Jung et al.,
2010; Wang et al., 2007; Wang and Liang, 2008) and Penman-
Monteith (PM)/Priestley-Taylor (PT) methods (Fisher et al., 2008;
Jin et al., 2011; Mu et al., 2007, 2011; Priestley and Taylor, 1972;
Yao et al., 2013), which usually use remotely sensed normalized
difference vegetation index (NDVI) or leaf area index (LAI) to esti-
mate ET. TIR-based remote sensing methods, such as the Mapping
2007), the two-source model (Anderson et al., 1997; Kustas and
Norman, 1999; Norman et al., 1995), Surface Energy Balance Sys-
tem (Su, 2002), Surface Energy Balance Algorithm for Land
(Bastiaanssen et al., 1998), and the surface temperature versus veg-
etation index triangle/trapezoid space (Jiang and Islam, 1999; Long
and Singh, 2012; Tang et al., 2010; Zhang et al., 2005), calculate ET
as the residual of surface energy balance (SEB) or PT method from
TIR-derived land surface temperatures (LST). Although these meth-
ods provide reasonable ET estimates for Landsat data, they still
have large uncertainties in regional ET simulations because of dif-
ferent model structures and environmental variables employed
(Chen et al., 2014; Choi et al., 2009; Liaqat and Choi, 2015; Liu
et al., 2011; Liu et al., 2013).

This issue has been partially resolved by several data fusion
methods, such as Bayesian model averaging (BMA) and empirical
orthogonal function (EOF), which merge multiple ET products to
improve regional ET estimation (Feng et al., 2016; Yao et al.,
2014, 2016; Zhu et al., 2016). For example, Yao et al. (2014) used
the BMA method by merging five ET products to enhance daily ET
estimates with smaller root mean square errors (RMSEs) than those
of the individual products. Zhu et al. (2016) also documented that
the BMAmethod by merging four ETmodels across north China has
the advantage of generating more skillful and reliable predictions
than the simple model averaging (SMA) scheme. Similarly, Feng
et al. (2016) reported that the EOF fusion method was capable of
integrating the two satellite-based ET datasets with improved con-
sistency and reduced uncertainties. However, the complex struc-
tures of these fusion methods, which affect their computational
efficiency for calculating the weightings for individual datasets,
can limit their wide application.

To reduce the complexity of the fusion method and to generate
global ET products with high spatial resolution, in this study we
developed a simple Taylor skill fusion (STS) method by merging
five Landsat-based ET products produced by the individual algo-
rithms and FLUXNET eddy covariance (EC) observations to improve
terrestrial ET estimation. The objectives of this study are threefold:
(1) to evaluate five Landsat-based ET datasets derived from five
classic ET algorithms using global long-term FLUXNET measure-
ments from 206 flux tower sites; (2) to apply and validate the
STS method for five Landsat-based ET datasets to improve terres-
trial ET estimation; and (3) give an example of mapping terrestrial
ET using the STS method and Landsat data.
2. Data

2.1. Landsat-based ET products

We produced the individual Landsat-based ET products using
five classic ET algorithms. We only used five traditional Landsat-
based ET products derived from VNIR-based remote sensing meth-
ods in this article because there are some disadvantages when
applying TIR-based remote sensing methods to ET estimations at
the global scale (Hope et al., 2005; Su, 2002). The forcing data
includes Landsat NDVI data with 30 m spatial resolution and daily
Modern Era Retrospective Analysis for Research and Applications
(MERRA) meteorological data with 1/2 � 2/3 degree spatial resolu-
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tion. All coarse resolution MERRA data were spatially interpolated
into 30 m using the method described by Zhao et al. (2005). Theo-
retically, this spatial interpolation method improves the accuracy
of meteorological data for each 30 m pixel because it uses a cosine
function and the four MERRA cells surrounding a given pixel to
remove sharp changes from one side of a MERRA boundary to the
other (Zhao et al., 2005). The individual ET products (Table 1) are
briefly described below.

2.1.1. RS-PM ET product
The RS-PM ET product was produced based on a revised remote

sensing-based PM (RS-PM) algorithm (Monteith, 1965) modified
from the Mu et al. (2007) algorithm (Appendix A). The input vari-
ables include daily surface net radiation (Rn), relative humidity
(RH), air temperature (Ta), and vapor pressure (e) from MERRA data
and LAI derived from Landsat NDVI data. The RS-PM ET product has
30 m spatial resolution. The product has a 16-day temporal resolu-
tion inherited from the Landsat data in the same time and filled
values with �9999 are assigned for cloudy pixels. The product is
global in coverage spanning 1998–2010 and future years are pro-
duced periodically.

2.1.2. SW ET product
The Shuttleworth-Wallace dual-source (SW) model

(Shuttleworth and Wallace, 1985) was adopted to generate the
SW ET product. The SW model accounts separately for the energy
balance for vegetation and soil components of a soil-vegetation
canopy unity (Hu and Jia, 2015; Sellers et al., 1992; Shuttleworth
and Wallace, 1985) (Appendix A). The SW ET product requires Rn,
RH, Ta, e, and wind speed (WS) from MERRA data and LAI derived
from Landsat NDVI data. The SW ET product has global coverage
during the period of 1995–2009 at 30 m spatial resolution and
16-day temporal resolution. The ET values for cloudy pixels are also
set as �9999.

2.1.3. PT-JPL ET product
The PT-JPL ET product was produced using a novel PT algorithm

developed by Fisher et al. (2008). This algorithm (PT-JPL) considers
the effects of both atmosphere and ecophysiology to derive con-
straints representing vegetation conductance without using any
ground-based observed data (Appendix A). The input variables
are Rn, RH, Ta, e, and vegetation parameters (NDVI, LAI and absorbed
photosynthetically active radiation (FPAR)) derived from Landsat
NDVI data. The PT-JPL ET product is available from 1998 to 2010
globally and with 16-day temporal and at 30 m spatial resolution.

2.1.4. MS-PT ET product
The MS-PT ET product was generated based on the modified

satellite-based PT (MS-PT) model developed by Yao et al. (2013)
and this model uses the apparent thermal inertia (ATI) derived
from diurnal air temperature range (DT) to parameterize surface
soil moisture (SM) constraints (Appendix A). The MS-PT ET product
Table 1
Summary of the Landsat ET products generated in this study for 2000–2009.

ET products Spatial resolution Temporal resolution Time Period Algorithms

RS-PM 30 m 16-day 1998–2010 Remote sens
SW 30 m 16-day 1995–2009 Shuttleworth
PT-JPL 30 m 16-day 1998–2010 Priestley-Tay
MS-PT 30 m 16-day 1997–2009 Modified sat
SIM 30 m 16-day 1998–2009 Simple hybr
only requires Rn, Ta, DT from MERRA data and NDVI from Landsat
data as inputs. The MS-PT ET product is generated at the same
spatial resolution, temporal resolution, coverage period, and filling
values as the PT-JPL ET product for the period of 1997–2009.

2.1.5. SIM ET product
A simple hybrid ET (SIM) formulation presented by Wang and

Liang (2008) is used in this study to generate the SIM ET product;
further, the SIM algorithm partitions the Rn by introducing Ta, NDVI,
DT and prior parameters (Appendix A). The SIM ET product is also
available at 30 m spatial and 16-day temporal resolution over the
global land surface from 1998 to 2009. The data processing step
includes MERRA interpolation to the target grid size of 30 m.

2.2. Eddy covariance data

Five Landsat-based ET products and the STS fusion method were
evaluated and validated using a large data set of ground-measured
flux data. The data from 206 EC flux tower sites were provided by
AmeriFlux, ChinaFlux, LathuileFlux, AsiaFlux, Arid/Semi-arid
experimental observation synergy network of China, Chinese
ecosystem research network (CERN), Asian AutomaticWeather Sta-
tion Network (ANN), Swiss FluxNet and several individual principal
investigators (PIs) of FLUXNET network. These EC flux tower sites
are mainly located in Europe, North America, and Asia, with three
sites in Australia, four sites in South America and three sites in
Africa (Fig. 1). The sites cover 10 global plant functional types
(PFTs): deciduous broadleaf forest (DBF, 28 sites), deciduous
needleleaf forest (DNF, 2 sites), evergreen broadleaf forest (EBF,
13 sites), evergreen needleleaf forest (ENF, 54 sites), mixed forest
(MIF, 10 sites), cropland (CRO, 31 sites), grassland (GRA, 36 sites),
savanna (woody savanna and savanna) (SAW, 8 sites), shrubland
(open, closed) (SHR, 13 sites) and wetland (WET, 11 sites). These
EC flux tower sites were separated into two separate subsets for
the merging algorithm calibration (103 sites) and validation (103
sites), each representing major global PFTs. These EC data covered
the period of 2000–2009 (each tower to varying extent) and cover
at least one growing season.

The half-hourly and hourly EC measurements (ET; sensible heat
flux, H) were processed based on a method of gap filling and qual-
ity control that used both the covariance of surface fluxes with
meteorological parameters and the temporal variations in surface
fluxes (Reichstein et al., 2005). These turbulent fluxes were com-
plemented by measurements of Rn and soil heat flux (G). If less
than 30% of the total data are missing, the daily values for Rn, ET,
H and G were calculated the averages of the ground-
measurements. Else, the daily value was set as invalid value (-
9999). Because turbulent EC measurements are susceptible to
incomplete energy balance closure (Leuning et al., 2012), we cor-
rected the daily ET using the method proposed by Twine et al.
(2000).

ETc ¼ ðRn � GÞ=ðHu þ ETuÞ � ETu ð1Þ
Forcing Inputs of the ET
products

MERRA Landsat

ing-based Penman-Monteith algorithm Rn, RH, Ta, e NDVI
-Wallace dual-source model Rn, RH, Ta, e, WS NDVI
lor algorithm of Jet Propulsion Laboratory, Caltech Rn, RH, Ta, e NDVI
ellite-based Priestley-Taylor algorithm Rn, Ta, DT NDVI
id algorithm Rn, Ta, DT NDVI



Fig. 1. Locations of the flux tower sites used to merge ET algorithm calibration (103 sites) and validation (103 sites).
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Accordingly, ETc is the corrected ET, and Hu and ETu are the
uncorrected H and ET, respectively.

3. Methods

3.1. Simple Taylor skill fusion method

A simple Taylor skill fusion (STS) method is developed to merge
the five Landsat-based ET products into a single ET product. The STS
fusion method uses a weighted average of all the Landsat-based ET
products and the weights are determined by their Taylor skill
scores (S) (Taylor, 2001). The S value of each ET product is calcu-
lated using the direct EC ground-measurements for reference.
The weights for all ET products sum up to one and the weights
are proportional to the S values of the five ET products. Thus, the
weights can be expressed as:

Wi ¼ Si=
Xn
i¼1

Si ð2Þ

Si ¼ 4ð1þ RiÞ4
ðdi þ 1=diÞ2ð1þ RmaxÞ4

ð3Þ

where Wi is the weight for ET product i, Si is the Taylor skill score of
ET product i and n is the number of ET products (n = 5 in this study).
Ri is the correlation coefficient between the estimated ET for pro-
duct i and the EC ground-measured ET. Rmax is the maximum corre-
lation coefficient that is set to 1.0 in this study. di is the ratio of the
standard deviation of the estimated ET for product i to the standard
deviation of the corresponding EC ground-measured ET. S varies
from zero (least skillful) to one (most skillful). The STS method
ensures that the merged ET product has the maximal R2 and mini-
mal error variance.

3.2. Assessment methods

R2, S, the root-mean-square error (RMSE) and the bias are used
to assess the performance of the STS method and the individual
ET products. R2 measures the agreement between satellite-based
estimated and ground-measured ET. RMSE characterizes the close-
ness of the estimation and observations and is calculated as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j¼1

ðEj � OjÞ2
vuut ð4Þ
Where N is the number of samples, Ej is the estimated ET for
sample j and Oj is the EC ground-measured ET for sample j. The bias
is also a metric to evaluate the predictive skill and it reflects
the difference between the average of the estimation and
observations.

Bias ¼ 1
N

XN
j¼1

ðEj � OjÞ ð5Þ
4. Results and discussion

4.1. Validation of Landsat-based ET products

To assess the accuracy of the five Landsat-based ET products,
the estimated ET from five Landsat-based ET products were directly
compared with EC ground- measurements at all 206 flux tower
sites for different PFTs. At the site scale, large differences were
found in the five Landsat-based ET products among different PFTs
(Fig. 2). For both DBF and MIF sites, the RS-PM ET product has the
largest S (>0.74) and R2 (>0.73, p < 0.01) compared to the other four
ET products, whereas the MS-PT ET product has the smallest RMSE
(29.4 W/m2 for DBF and 20.4 W/m2 for MIF) and bias (<8 W/m2).
For both ENF and WET sites, the SW ET product exhibits highest S
(0.48 for ENF and 0.62 and WET) and the smallest RMSE (30.1 W/
m2 and 22.3 W/m2). For all of the SAW sites, both RS-PM and SW
ET products have the highest accuracy with an average S of 0.68
and average RMSE of approximately 20W/m2. The MS-PT ET pro-
duct exhibits the highest S (>0.57) with an RMSE of less than
25.5 W/m2, and R2 (>0.65) with a confidence level of p < 0.05 for
both EBF and CRO sites. For GRA and SHR sites, the SIM ET product
with the low RMSE of less than 26.3 W/m2 presents the highest S
(>0.59) and R2 (>0.58, p < 0.05) compared to others. Most ET prod-
ucts (excluding SW ET product) have the highest S and (more than
0.68) and R2 (more than 0.66, p < 0.05) with the lowest average
RMSEs, less than 22 W/m2 for all of the DNF sites, compared to
those for the other land cover types. This may caused by a few
samples for only 2 DNF sites artificially to highlight the good per-
formance of these ET products. When we selected equal samples
for all of the land cover types, most ET products still provide better
fits to the flux tower observations for DNF sites. According to the S
values, the accuracies of both MS-PT and SIM ET products are the
highest for all ENF sites. Although the PT-JPL ET product does not
result in the highest S, it still has good accuracy for the variety of
vegetation types. Moreover, we found that none of the individual



Fig. 2. Bar graphs of the statistics (RMSE, Bias, R2 and S) of the comparison between daily ET from multiple Landsat-based ET products (including merged ET product) and
ground-measurements at all 206 flux tower sites for different land cover types. DBF: deciduous broadleaf forest, DNF: deciduous needleleaf forest, EBF: evergreen broadleaf
forest, ENF: evergreen needleleaf forest, MIF: mixed forest, CRO: cropland, GRA: grassland, SAW: woody savanna and savanna, SHR: open and closed shrubland, and WET:
wetland.
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Landsat-based ET dataset provides the most accurate ET estimate
for all land cover types.

Overall, the five Landsat-based ET products account for 52–57%
of ET variability over all EC measurements (Fig. 3). Both MS-PT and
SIM ET products have the highest S of 0.59, followed by RS-PM, SW
and PT-JPL with S values ranging from 0.55 to 0.58. This indicates
that different algorithm parameterizations affect the accuracy of
different ET products. The highest accuracy of both MS-PT and
SIM ET products may be a result from the lower uncertainties in
the required in the lower number of forcing data (Wang and
Liang, 2008; Yao et al., 2013). In addition, the algorithm for the
SIM ET product is strongly related to the regression coefficients
because it was calibrated over the Southern Great Plains (SGP) area
of the United States. Therefore, the SIM ET product estimated from
this algorithm provides a better fit to flux tower observations. In
contrast, the ET products (e.g. RS-PM and SW) are produced using
resistance-based methods. The surface resistance parameterization
schemes of these methods are complex, which also affected the
accuracy of these ET products (Ershadi et al., 2014; Zhu et al.,
2016). All five Landsat-based products slightly underestimate ET



Fig. 3. Scatterplots of the daily ET from multiple Landsat-based ET products and ground-measurements at all 206 flux tower sites.
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compared to the measurements, which can be explained by the
fact that the algorithms for producing these products are originally
developed based on the MODIS data.
Fig. 4. Weights for five Landsat-based ET products at the 103 calibration tower
sites.
4.2. Merging of the Landsat-based ET products

4.2.1. Calibration against tower measurements
To merge five Landsat-based ET products according to the STS

method, the data collected at the 103 merging algorithm calibra-
tion sites were considered as calibration data to determine weights
for the individual ET products. Fig. 4 presents the weights for the
five Landsat-based ET products based on EC ground-
measurements. Both MS-PT and SIM ET products have the highest
weight of 20.5%, followed by RS-PM (20.2%) and SW (19.5%) ET
products. In contrast, the weight for PT-JPL ET products is only
19.3%, indicating its contribution to the merged ET estimates is
the smallest than for those of the other products. Although previ-
ous studies showed that the PT-JPL algorithm driven by the MODIS
vegetation variables had the best performance compared to the PM
algorithm (Ershadi, et al., 2014; Yao et al., 2013), our result illus-
trates that the PT-JPL algorithm driven by the Landsat vegetation
variables has the worst performance compared to other four algo-
rithms (RS-PM, SW, MS-PT and SIM). This may be caused by the
spectral reflectance difference between Landsat and MODIS data,
which resulted in the difference between Landsat and MODIS veg-
etation variables (e.g. NDVI) (Jia, et al., 2012).

The statistical summaries of the STS method performance for
the 103 calibration sites among different land cover types are plot-
ted in Fig. 5. One can notice that the STS-based ET estimation for
different land cover types have higher S and lower RMSEs



Fig. 5. Same as Fig. 2 but for the 103 calibration tower sites. The merged ET was calculated using the weights for five Landsat-based ET products at the 103 calibration tower
sites.
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compared to the individual Landsat-based ET products at the site
scale. For 27 ENF calibration sites, the STS method has a higher S
of 0.47 and R2 of 0.43 (p<0.05) and a lower RMSE of 27.8 W/m2 than
individual ET products, though it presents the worst performance
than those at other land cover types. For 6 WET calibration sites,
the STS method shows better performance than single ET products,
with lower RMSEs of 22.4 W/m2 and higher S of 0.68. Similarly, the
RMSEs of the STS-based ET estimation versus EC ground-
measurements at 70 other calibration sites are all less than
25W/m2 and the S values are all more than 0.7. Fig. 6 compares
daily ET observations at all 103 calibration sites and ET estimates
for the different ET products. The results show that the merged
ET product has the best performance with the highest S of 0.66
and the lowest RMSE of 23.8 W/m2, compared to the other prod-
ucts. This indicates that a reasonable choice of fusion method is
feasible to improve the accuracy of Landsat-based ET estimation
by combining EC ground-measurements and multiple ET products.

4.2.2. Validation against EC measurements
The performance of the STS method for the validation tower set

is similar to the results from the merging algorithm calibration
tower set (Fig. 7), though the S and R2 statistics for the partial val-
idation set (e.g. DBF, ENF) are slightly smaller than the merging
algorithm calibration set. The RMSE of the merged daily ET for dif-



Fig. 6. Scatterplots of the daily ET from multiple Landsat-based ET products (including merged ET product) and ground-measurements at the 103 calibration tower sites.

Y. Yao et al. / Journal of Hydrology 553 (2017) 508–526 515
ferent land cover types varies from 11.2 W/m2 to 32.4 W/m2, the R2

varies from 0.45 to 0.86, and the S is greater than 0.7 (excluding
ENF and WET). The merged ET decreases the RMSE by �2W/m2

for forests, cropland and grassland sites and �3W/m2 for other
sites, and increases the S by approximately 0.03 and increased
the R2 by more than 0.02 (p<0.05).

Fig. 8 illustrates a time series for clear-sky daily ground-
measurements and estimated ET from multiple datasets for differ-
ent land cover types. In comparison to the single Landsat-based ET
products, the merged ET based on the STS fusion method produces
seasonal ET variations that are closest to the ground-observed
values. Overall, the S (R2) and RMSE of the merged ET were
approximately 5% higher and 8% lower than those of the best
Landsat-based ET product, respectively (Fig. 9). The STS fusion
method reduced the errors of the estimated ET by adjusting the
weights of the single products through incorporation of EC
ground-measurements.

4.2.3. Implementation of merging the ET products
To merge the five Landsat-based ET products to generate a new

ET dataset, we obtained the weights of the STSmethod using five ET
products and all EC ground-measurements. Fig. 10 demonstrates
the weights of different Landsat-based ET products when merging
the ET, which is similar to the weights from the merging algorithm
calibration tower subset. One notices that the relative contribu-
tions differ considerably for five Landsat-based ET products. The
greatest contributors to the merged ET are both MS-PT and SIM,
contributing 20.5%, followed by RS-PM (20.1%), SW (19.8%) and
PT-JPL (19.1%).

Fig. 11 shows scatter plots of a comparison between daily
merged and ground-measured ET using ground observation data
at all 206 flux tower sites. The RMSE of the merged ET at the site
scale is 25.1 W/m2, the bias is 5.4 W/m2, the S is 0.61 and the R2

is 0.60 (p < 0.05). In comparison to the other five Landsat-based
ET products, the merged ET product yields the highest accuracy
(Fig. 3). Fig. 12 illustrates that the error histograms for the single
Landsat-based ET products are more biased compared to the EC
observations, whereas the merged ET using the STSmethod is more
centered around zero. A substantial number of previous studies
reported that the errors of the estimated ET from remotely sensed
data is approximately 15–30% (Jung et al., 2010; Wang and
Dickinson, 2012; Yao et al., 2014) and the overall error of the



Fig. 7. Same as Fig. 2 but for the 103 validation tower sites for different land cover types. The merged ET was calculated using the weights for five Landsat-based ET products
at the 103 calibration tower sites.
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merged ET based on the STS method is approximately 10%. There-
fore, the accuracy of the merged ET in this study can be applied to
produce global terrestrial Landsat-based ET product.

4.3. A case study of mapping regional ET

To map the regional ET from the Landsat-based ET products, we
selected an example from the Landsat data of a 1.4 by 1.2 km
region (33.77 �N-33.88 �N and 117.94 �E-118.09 �E) that mainly
included cropland to map daily ET (Fig. 13). Fig. 13 also shows
the corresponding spatial patterns in NDVI for August 12, 2005,
along with the associated frequency histogram. High vegetation
cover fraction occurred on August 12 owing to rapid crop growth.

In Fig. 14, the spatial pattern of ET from each product is illus-
trated along with a histogram showing the frequency distribution
of values within the simulation domain. The maps of ET are
strongly positively correlated with the NDVI (R2 of more than
0.91), which may be explained by the fact that higher vegetation
transpiration where there is a higher vegetation fractional cover.
In terms of overall magnitude and spatial pattern, there are obvi-
ous differences among the multiple Landsat-based ET products.
In general, the merged ET has an intermediate ET value with a his-



Fig. 8. Example of a time series for daily ET as ground-measured and estimated using different Landsat-based ET products (including merged ET product) at ten validation
sites. The merged ET was calculated using the weights for five Landsat-based ET products at the 103 calibration tower sites.
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Fig. 9. Same as Fig. 6 but for the 103 validation tower sites. The merged ET was calculated using the weights for five Landsat-based ET products at the 103 calibration tower
sites.

Fig. 10. Weights for five Landsat-based ET products at all 206 flux tower sites.

Fig. 11. Scatterplots of the daily ET from the merged ET products and ground-
measurements at all 206 flux tower sites. The merged ET was calculated using the
weights for five Landsat-based ET products at all 206 flux tower sites.
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togram of spanning a full range from 60 to 82W/m2, which is
slightly smaller than the RS-PM, PT-JPL and SW ET products
whereas slightly larger than both MS-PT and SIM ET products.
The difference in spatial pattern of these ET products was mainly
caused by the different physical structures of ET algorithms, such
as the physical parameterizations of the SW algorithm, affecting
its coupling with land surface and atmosphere (Dirmeyer et al.,
2013).



Fig. 12. Error histograms for daily ET derived from five Landsat-based ET products, and the merged ET product for all 206 flux tower sites.
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4.4. Discussion

4.4.1. Uncertainties of the merged ET estimates
4.4.1.1. Input errors. The varied accuracies of the merged ET pro-
duct were affected by the input errors of the STS fusion method,
which refers to the errors from the individual Landsat-based ET
products and EC ground-measurements. The individual Landsat-
based ET products are estimated using the meteorological variables
from MERRA data and vegetation parameters derived from Landsat
data. Previous studies showed that no single reanalysis dataset is
superior to others in terms of meteorological variables (Ta, RH, e
and WS) to estimate land surface energy budgets (Shi and Liang,
2014; Wang and Zeng, 2012; Zhu et al., 2012). Recent studies
revealed large bias for MERRA data when compared to ground-
measurements (Rienecker et al., 2011; Zhao et al., 2006). Yao
et al. (2015) found that daily Rn from MERRA tended to underesti-
mate at high values compared to ground-measurements. In addi-
tion, there also exist large biases in the vegetation parameters
(e.g. LAI) retrieved from Landsat data (Ganguly et al., 2012).
Eklundh et al. (2003) reported that Landsat data can only explain
50–80% of the variation in LAI for coniferous forests. Thus, the
uncertainty from the individual and merged ET products could be
inherited through errors from bothMERRA and Landsat data inputs.

The errors of the EC ground-measurements determine the accu-
racy of the merged ET product because ground-measured ET is con-
sidered as the ‘‘true” value for calibrating the individual products.
Although EC measurements are relatively accurate for ET acquisi-
tion, approximately 5–20% still exist (Foken, 2008). Moreover,
there could be inaccuracies in interpreting their values owing to
the energy imbalance in the EC method (Mahrt, 2010). Foken
(2008) pointed out that the EC method can only capture small
eddies and ignore large eddies in the lower boundary layer, which
influence the energy imbalance. Although we used the method
proposed by Twine et al. (2000) to correct the ET, currently no
agreements or protocols have been reached for the causes and cor-
rections of energy imbalance from eddy covariance measurement
(Leuning et al., 2012; Wohlfahrt et al., 2009). These corrections still
cause large errors of EC measurements (Finnigan et al., 2003;
Twine et al., 2000). Thus, input errors of the EC measurements
and error propagation through calculations, including EC data cor-
rection, gridded interpolation and different data fusion, all con-
tribute to the uncertainties of the merged ET product.



Fig. 13. (a) An example of a partial region of Landsat imagery with a false-color composite on August 12, 2005; (b) NDVI maps for August 12, 2005, and (c) frequency
histograms for NDVI on August 12, 2005.
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4.4.1.2. Scaling effects. The error of the merged ET product intro-
duced by the spatial mismatch between the flux tower site foot-
prints and the individual Landsat-based ET pixel footprints is an
important issue. The footprint of the flux tower site is approxi-
mately several hundred meters while the spatial resolution of the
individual Landsat-based ET products is only 30 m (Baldocchi,
2008; McCabe and Wood, 2006). Directly using EC ground-
measured ET as ‘‘true” value to merge the individual Landsat-
based ET products would lead to large uncertainties in the merged
ET estimates.

To investigate the impact of the resample scale of the individual
Landsat-based ET products to the accuracy of the merged ET, we
averaged the daily ET from different Landsat-based ET products
by use of a 30-570 m window. Compared with the original ET esti-
mates at 30 m, a substantial drop in ET estimation errors occurred
when products were aggregated to slightly coarser resolutions
(Fig. 15). With an increase in window size, a rise in estimation
errors appeared owing to the surface heterogeneity in ET. When
spatial resolution arrived at 450 m, which is much larger than that
of TM (30 m), the individual and merged ET products had the
smallest RMSE. This supports the expectation that differences in
the resample scales owing to the higher surface heterogeneity
directly influences the accuracy of the merged ET.

4.4.1.3. Fusion method. In the case of high-level data fusion for ter-
restrial ET, the STS method constrains the error of the fused ET by
introducing EC ground-measurements to adjust the weights for
the individual Landsat-based ET products. To quantify the errors
of the different fusion methods, experiments with the same inputs
have been performed for different fusion models, including Multi-
ple Linear Regression (MLR), Simple Model Averaging (SMA), Baye-
sian Model Averaging (BMA) (Raftery et al., 1997), Supported
Vector Machine (SVM) (Vapnik, 1999), Multivariate Adaptive
Regression Splines model (MARS) (Friedman, 1991), Random Forest
Regression (RFR) (Breiman, 2001) and the STS method. The results
of the leave-one-out cross-validation illustrated that the largest
absolute differences in RMSE and R2 of ET between the STS method
and other fusion methods are relatively low, by approximately
1.0 W/m2 and 0.02 respectively (Table 2). Further, the STS pro-
duced comparable accuracy but reduced the complexity of the
fusion algorithm to improve computational efficiency when com-
pared with other advanced fusion methods, indicating that the
STS method can effectively achieve the goal of ET products integra-
tion in this study.

Although the STS method might have the statistical significance
to a certain degree, it obviously lacks of physical mechanism. The
STS method only considers the combinations of different algo-
rithms or datasets and it does not improve the satellite-based
retrieval algorithm itself in essence (Taylor, 2001; Yao et al.,
2014). Therefore, the performance of the STS method is highly
dependent on the weightings for individual datasets, which was
calibrated using the data from a lot of flux tower sites. Our next
step is to develop a novel physical-based fusion algorithm by com-
bining the residual of surface energy balance method and the
water balance equation to produce ET product for regional
application.

4.4.2. Implications for agricultural water consumption and global
models assessment

Quantifying ET using Landsat data is critical for mapping
regional-scale ET at relatively high spatial resolution, acknowledg-
ing agricultural and watershed water management (Anderson
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et al., 2008). The merged ET product in this study was estimated
using Landsat NDVI without LST. NDVI change relatively slowly
when compared with surface moisture conditions characterized
in the LST, and sampling frequency may be less of an issue
(Anderson et al., 2012). Thus, these VNIR-based methods to ET
mapping have some practical advantages over TIR-based methods
(Glenn et al., 2011). However, NDVI offers no information about
bare soil evaporation after crops have senesced (Anderson et al.,
2008). Fortunately, meteorological relative humidity (RH) and
diurnal air temperature range (DT) can effectively characterize
the soil water deficit (Fisher et al., 2008; Wang and Liang, 2008).
Recent studies indicate RH was superior to other water stress met-
rics (including soil water content and VPD) in regional ET estima-
tion (Yan and Shugart, 2010). In particular, for the period of the
main winter wheat growing season, ET derived by VNIR-based
methods demonstrated their reliability to characterize agricultural
moisture conditions at a regional scale (Zhang et al., 2016). This
Fig. 14. Daily ET maps of a partial region shown in Fig. 13 with frequency histograms fro
suggests that the merged ET in this study can be used to identify
climatically sensitive agricultural systems and provide a diagnostic
assessment of agricultural crop water consumption.

Accurate estimates of global terrestrial ET will be important for
understanding global energy, water and carbon cycles. However,
current both coarse-resolution global ET products estimated by
remote sensing or global climate models (GCMs) have not been
well validated owing to the sparse ground-measurements, compli-
cated surface characteristics and the spatial mismatch between the
flux tower site footprints and the coarse-resolution global ET prod-
ucts footprints (Anderson et al., 2012; Yebra et al., 2013; Yan et al.,
2012). Like TIR-derived ET products, the merged ET product with
high spatial resolution provides a reference dataset for evaluating
and validating coarse-resolution global ET products (e.g., GCMs)
because it provides a bridge between the tower flux footprint scale
(several decades and hundreds meters) and the grid scale of
coarse-resolution global ET products with several hundred kilome-
m five Landsat-based ET products, and the merged ET product for August 12, 2005.



Fig. 15. Change of RMSE of estimating daily ET from five Landsat-based ET products,
and the merged ET product with spatial resolutions at the 103 validation tower
sites. The merged ET was calculated using the weights for five Landsat-based ET
products at the 103 calibration tower sites.

Table 2
Comparison of the cross validation results of daily ET from multiple Landsat-based ET
products and fused products. S represents the Taylor skill scores.

ET Products RMSE R2 S

STS 25.4 0.60 0.61
MLR 26.2 0.59 0.60
SMA 26.9 0.58 0.59
BMA 24.9 0.61 0.62
SVM 24.2 0.63 0.63
MARS 24.4 0.62 0.62
BFR 24.1 0.64 0.64
RS-PM 27.9 0.56 0.58
SW 29.6 0.55 0.57
PT-JPL 29.8 0.52 0.55
MS-PT 27.1 0.57 0.59
SIM 27.6 0.57 0.59

Fig. 14 (continued)
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ters. Further studies should focus on spatial upscaling of the
merged ET product in this study to evaluate the different coarse-
resolution global ET products.

5. Conclusions

We described a simple Taylor skill (STS) fusion method that
merged five Landsat-based ET products produced by individual
algorithms and FLUXNET eddy covariance (EC) observations for
improving terrestrial ET estimation. These five Landsat-based ET
products were also evaluated based on the globally distributed
FLUXNET EC observations. We found that at the site scale, large dif-
ferences were found in the five Landsat-based ET products among
different plant functional types.

According to the STS method, weights for the individual ET
products were calibrated based on the data collected at the 103
merging algorithm calibration sites and the results show that the
merged ET product has the best performance compared to the indi-
vidual products. The performance of the STSmethod for the valida-
tion tower subset was similar to the results from the merging
algorithm calibration tower subset, though the S and R2 statistics
for the partial validation set are slightly smaller than the merging
algorithm calibration set.

The weights of the STS method using five ET products and all EC
ground-measurements were used to map the regional ET. An
example of regional ET mapping shows that the STS-merged ET
provides valuable insights for agricultural ET estimation. Uncer-
tainties of the STS-merged ET are also discussed. The merged ET
product presented in this study provides the bridge between the
tower flux footprint scale and the grid scale of coarse-resolution
global ET products. However, the STS method obviously lacks of
physical mechanism. Our next step is to develop a novel
physical-based fusion algorithm by combining the residual of sur-
face energy balance method and the water balance equation to
produce ET product for regional application.
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Appendix A. Algorithms for Landsat-based ET products

A.1. RS-PM algorithm

The revised remote sensing-based PM (RS-PM) algorithm is
developed based on the Mu et al. (2011) algorithm, which is
revised from the PM equation and it can be computed as follows:

ET ¼ DðRn � GÞ þ qCpVPD=ra
Dþ cð1þ rs=raÞ ðA1Þ

where D is the slope of the saturation water vapor pressure curve
(Pa/K); c is the psychrometric constant (Pa/K); q is the density of
the air (k/gm3); VPD is the vapor pressure deficit (Pa); ra is the aero-
dynamic resistance (s/m) and rs is the surface resistance (s/m). ra
calculation is described in Mu et al. (2011). For calculating rs, Mu
et al. (2011) calculated the temperature and moisture constraints
for stomatal conductance using different parameters among various
ecosystem types. In this study, we revised the temperature con-
straint (mT) with an optimum air temperature (Topt) set at 25 �C
(Fisher et al., 2008; Yao et al., 2013; Yuan et al., 2010).

mT ¼ exp � Ta � Topt

Topt

� �2
" #

ðA2Þ

We also revised the moisture constraint (Mu et al., 2007) (mVPD)
by setting VPDclose and VPDopen as 650 Pa and 2900 Pa for all ecosys-
tem types, respectively.

mVPD ¼
1:0 VPD 6 VPDopen

VPDclose�VPD
VPDclose�VPDopen

VPDopen < VPD < VPDclose

0:1 VPD P VPDclose

8><
>: ðA3Þ

where close refers to nearly complete inhibition and open refers to
no inhibition to transpiration. Yuan et al. (2010) also found that it
is possible to set invariant model parameters across different
ecosystem types to reduce the effects of misclassification of land
cover types.

A.2. SW algorithm

The Shuttleworth-Wallace (SW) algorithm is designed by comb-
ing two PM models for soil evaporation and vegetation transpira-
tion (Shuttleworth and Wallace, 1985). The SW algorithm can be
written as:

ET ¼ CsPMs þ CvPMv ðA4Þ

PMs ¼ DðRn � GÞ þ ðqCpVPD� DrasRncÞ=ðraa þ rasÞ
Dþ c½1þ rss=ðraa þ rasÞ� ðA5Þ

PMv ¼ DðRn � GÞ þ ½qCpVPD� DracðRns � GÞ�=ðraa þ racÞ
Dþ c½1þ rsc=ðraa þ racÞ� ðA6Þ

Cs ¼ 1
1þ ½RsRa=ðRcðRs þ RaÞÞ� ðA7Þ

Cv ¼ 1
1þ ½RcRa=ðRsðRc þ RaÞÞ� ðA8Þ

Ra ¼ ðDþ cÞraa ðA9Þ

http://aan.suiri.tsukuba.ac.jp/),
http://observation.tea.ac.cn/
http://westdc.westgis.ac.cn/water
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Rs ¼ ðDþ cÞras þ rssc ðA10Þ

Rc ¼ ðDþ cÞrac þ rscc ðA11Þ
where Cs and Cv (dimensionless) are the surface resistance coeffi-
cients for soil and vegetation, respectively. PMs and PMv are vari-
ables related to describe evaporation from soil and transpiration
from vegetation, respectively. Rns and Rnc are Rn into soil and vege-
tation, respectively. raa is aerodynamic resistances from vegetation
canopy height to reference height. ras and rac are aerodynamic resis-
tances from the soil surface to canopy height and leaf to canopy
height, respectively. rss and rsc are the surface resistance for soil
and vegetation, respectively. In general, rss is calculated using a
function of the top layer of soil moisture (Sellers et al., 1992). In this
study, we used RHVPD to replace soil moisture to calculate rss
because RHVPD can be used to characterize soil moisture constraints
for soil evaporation (Fisher et al., 2008) and it can be expressed as:

rss ¼ expð8:206� 4:255RHVPDÞ ðA12Þ
A.3. PT-JPL algorithm

Based on the Priestley-Taylor algorithm, Fisher et al. (2008)
developed the PT-JPL algorithm by downscaling potential ET (PET)
to actual ET and it is written as:

ET ¼ ETs þ ETc þ ETi ðA13Þ

ETs ¼ a½f wet þ ð1� f wetÞf sm�
D

Dþ c
ðRns � GÞ ðA14Þ

ETc ¼ að1� f wetÞf gf T f M
D

Dþ c
Rnc ðA15Þ

ETi ¼ af wet
D

Dþ c
Rnc ðA16Þ

Where ETs refers to soil evaporation, ETc refers to vegetation
transpiration and ETi refers to the canopy interception evaporation.
a is the PT coefficient (1.26). fwet is the wet surface fraction (RH4).
fsm is the soil moisture constraint (RHVPD). fg is the green canopy
fraction (fAPAR/fIPAR). fT is the plant temperature constraint (mT)
and fM is the plant moisture constraint (fAPAR/fAPARmax). fAPAR is the
absorbed photosynthetically active radiation (PAR) and fIPAR is the
intercepted PAR.

A.4. MS-PT algorithm

The modified satellite-based PT (MS-PT) algorithm developed by
Yao et al. (2013) estimates ET by calculating the sum of the unsat-
urated soil evaporation (ETds), the saturated wet soil surface evap-
oration (ETws), the canopy transpiration (ETv), and the canopy
interception evaporation (ETic). The total ET can be expressed as:

ET ¼ ETds þ ETws þ ETv þ ETic ðA17Þ

ETds ¼ að1� f wetÞf sm
D

Dþ c
ðRns � GÞ ðA18Þ

ETs ¼ af wet
D

Dþ c
ðRns � GÞ ðA19Þ

ETv ¼ að1� f wetÞf cf T
D

Dþ c
Rnc ðA20Þ

ETic ¼ af wet
D

Dþ c
Rnc ðA21Þ
f sm ¼ 1
DT

� �DT=DTmax

ðA22Þ
f wet ¼ f 4sm ðA23Þ
f c ¼
NDVI � NDVImin

NDVImax � NDVImin
ðA24Þ

where DTmax is the maximum diurnal air temperature range (40 �C)
and fc is vegetation cover fraction. NDVImin and NDVImax were the
minimum and maximum NDVI during the study period, set as con-
stants of 0.05 and 0.95 (Zhang et al., 2009) in this algorithm,
respectively.
A.5. SIM algorithm

The simple hybrid ET (SIM) formulation was developed by
Wang and Liang (2008) based on satellite determination of surface
net radiation, vegetation index, temperature, and DT and the SIM
algorithm can be written as:

ET ¼ Rnða0 þ a1NDVI þ a2Ta � a3DTÞ ðA25Þ

where a0 = 0.1440, a1 = 0.6495, a2 = 0.0090 and a3 = 0.0163. These
coefficients were calibrated using the ground measurements at
the Southern Great Plains (SGP) sites in the United States from Jan-
uary 2002 to May 2005. Considering the SGP sites cover the variety
of land cover that includes grass, rangeland, pastures, crop fields,
forests, and mixed cover-including vegetation and bare soil-and
that their locations also differ considerably from each other, it can
be used to estimate global terrestrial ET (Wang and Liang, 2008).
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