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Introduction  

This supporting information include a detailed justification of the use of SIF as a proxy of APARchl 
(Text S1), data quality check for satellite and flux data (Text S2), the error propagation analysis 
(Text S3) and the landcover map used in this study (Text S4). It also includes 11 figures and 6 tables 
to support the analysis. 

Text S1 Relationship between SIF and fPARchl. 

We use the soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy 
fluxes (SCOPE) model (van der Tol et al., 2009b) to explore the robustness of using SIF to derive 
fPARchl. The SCOPE model simulates (1) the distribution of incident light over leaves as a function of 
leaf position in the canopy and leaf orientation, (2) the conversion of incident light on leaves into 
fluorescence emission spectra, and (3) the propagation of fluorescence through the canopy. At the 
leaf level, it also simulates photosynthesis as a function of irradiance, leaf temperature, humidity 
and CO2 concentration. For the first step, the ‘Scattering of Arbitrary Inclined Leaves’ (SAIL) model 
(Verhoef, 1984) concept is used, and for the second step, the Fluspect model (Verhoef, 2011), a 
model that simulates the probability of the light absorbed by chlorophyll to four sinks, i.e., 
photochemistry (𝜙𝜙𝑃𝑃), fluorescence (𝜙𝜙𝐹𝐹), heat dissipation in light-adapted condition (𝜙𝜙𝑁𝑁) and dark-
adapted condition (𝜙𝜙𝐷𝐷), is used. For the third step, the FluorSAIL model simulates the reabsorption 
of fluorescence in the canopy that reduce the fluorescence to a value that is lower than the total 
emitted fluorescence by all leaves; this reabsorption can be characterized using a factor 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒. In 
essence, the simulated photosynthesis summed over all leaves (A) and the simulated observation of 
SIF can be expressed as: 

A = 𝜙𝜙𝑝𝑝 × fPARchl × PAR 
SIF = 𝜙𝜙𝑓𝑓 × fPARchl × PAR × 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒  
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The integration of the 𝜙𝜙𝐹𝐹 × 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒  of the canopy equals to fluorescence efficiency (FE) in Eq. 2. To 
test whether FE can be approximated as a constant, we tested the variation of the two components 
of FE, i.e., 𝜙𝜙𝐹𝐹  and 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒, comparing with the variation of APARchl (fPARchl × PAR). Previous 
studies suggest the maximum carboxylation rate (Vcmax) is one of the most important factor which 
determines the probability of the partitioning of the absorbed photon by chlorophyll (𝜙𝜙𝐹𝐹) (van der 
Tol et al., 2009a; Y Zhang et al., 2014). We first ran the SCOPE model using different Vcmax values for 
one vegetation type (LAI = 3, Cab = 80 µg cm−2) over different values of irradiance (thus constant 
𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒  but variable PAR) and showed that the 𝜙𝜙𝐹𝐹  can be considered as a first approximation as a 
constant (Fig. S3), because the variability of APARchl is much larger than that of 𝜙𝜙𝐹𝐹. As SIF is also 
sensitive to chlorophyll a+b content (Cab), dry matter content (Cdm) and leaf area index (LAI) 
(Verrelst et al., 2015), which may alter SIF through the change of 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒. We then ran SCOPE for one 
value of irradiance but different value of Cab, Cdm and LAI (thus constant PAR but variable 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒) 
(Table S6), we found that the FE has much less variation (2.04±0.34 J nm-1 sr-1 mol-1) (Fig. S4) 
compared to the fPARchl (0.57±0.18). Considering the PAR variation during the satellite overpass, 
the total variation of APARchl will be much higher than 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒. Because both 𝜙𝜙𝐹𝐹  and 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒  have 
much smaller variation compared with APARchl, FE can be considered as a first approximation as a 
constant. 
 

Text S2. Data quality check for FLUXNET2015 and remote sensing dataset 

For FLUXNET2015 dataset, we applied the following screening rules to increase confidence: (1) For 
each 8-day (10-day) interval, we filtered out all periods with less than 75% of good quality (based on 
daily quality check field) gap-filled data of shortwave radiation and NEE observation. (2) To reduce 
the uncertainties of the flux partitioning, we compared the GPP estimates from both daytime and 
nighttime partitioning methods on 8-day (10-day) periods and excluded those with more than 10% 
difference between methods. 
 
We applied a rigorous data quality checks for three MODIS product, when comparing with fPARSIF 
at global scale to determine the best fPARchl proxies, only the highest quality observations are used 
for analysis: for NDVI and EVI, we only used quality layer Pixel Reliability = 0, (Good Data); for 
fPARmod15, we used same quality check method as described below in the site level analysis below; 
for MTCI, we masked out those areas that were identified as bad quality by MODIS data quality 
layer. The bad quality layers were also applied to fPARSIF so that the area used to calculate the 
average value of OVAIs for each month were also used to calculate the average value for fPARSIF. 
We also filtered the regions with persistent high cloud cover (since high cloud cover would 
invalidate our use of cos(SZA) as a proxy of PAR), and those regions with very low signal to noise 
ratio (e.g. barren area). 
 
To compare with the site-level eddy covariance measurements, four OVAIs were undergone 
rigorous data quality check: (1) The robustness of MODIS VIs (i.e., NDVI, EVI) retrievals was checked 
using the quality control layer from MOD09A1 C6; observations affected by cloud (“internal cloud 
algorithm flag” equals to “1”), high or climatological aerosols (“aerosol quantity” equals to “00” or 
“11”), and snow (“internal snow mask” equals to “1”) were eliminated (Vermote, 2015). For the 
MOD15A2H C6 fPAR product (fPARmod15), the additional five-level confidence score was evaluated 
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(“SCF_QC” equals to “000” or “001”), and only observations using the main algorithms (radiative 
transfer model) were retained (Myneni et al., 2015). (2) The BISE algorithm (Viovy et al., 1992) was 
applied to remove values that were potentially biased by atmospheric conditions and that were not 
identified by previous quality checks. (3) The remaining high-quality values were then linearly 
interpolated to fill the gaps created from the previous steps. For MTCI, we did not apply any quality 
check procedure and just replaced all zero values with NAs during the analysis as no quality control 
layer is provided by the data product. 
 

Text S3. Error propagation in each approximation 

Since our study includes several comparisons and approximations, the uncertainties related to each 
dataset and approximations can affect the final result. Therefore, we analyzed the uncertainties 
using the error propagation law (Deming, 1943):  

𝜎𝜎𝑓𝑓2 = 𝐠𝐠T𝐕𝐕𝐕𝐕  
Here 𝜎𝜎𝑓𝑓2 represents the variance of the function 𝑓𝑓 with a set of parameters 𝜷𝜷, whose variance-

covariance matrix is 𝐕𝐕. The 𝑖𝑖th element in the vector 𝐠𝐠 is 𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑖𝑖

. If the parameters in vector 𝜷𝜷 are 

uncorrelated, the error propagation can be simplified to: 

𝜎𝜎𝑓𝑓2 = ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑖𝑖

�
2

𝜎𝜎𝛽𝛽𝑖𝑖
2 

This equation allows us to calculate the variance of a function (𝜎𝜎𝑓𝑓2) from the variance of its 
individual input (𝜎𝜎𝛽𝛽𝑖𝑖

2). The uncertainties of a variable can be greatly reduced by averaging 𝑛𝑛 
measurements: 

𝜎𝜎𝑓𝑓̅2 =
𝜎𝜎𝑓𝑓2

𝑛𝑛
 

The error propagation for a linear regression can be quantified from two aspects: (1) the uncertainty 
of the regression, which can be quantified as an error term ϵ (Fig. S9), and (2) the uncertainty from 
the independent variable. A detailed error propagation calculation can be found below, and the 
uncertainties for each step are summarized in Table S3. 
 
There are two major approximations in our analyses: (1) using SIF as an approximation of fPARchl 
(fPARSIF). (2) using OVAIs as approximations of fPARchl (fPARSIF). In this error propagation analysis, 
the uncertainties of fPARchl and fPARSIF are same in terms of CV, since the uncertainties in 𝜙𝜙𝑓𝑓  and 
𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒  are also considered for fPARSIF. For the first step of approximation, fPARchl can be expressed 
as: 

fPARchl =
SIF

iPAR × 𝜙𝜙𝑓𝑓 × 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒
 

The uncertainty of fPARSIF (𝜎𝜎fPARSIF) can be calculated from the uncertainties from each 
independent variable using the error propagation law and assuming each independent variable is 
independent from each other: 

σfPARSIF
fPARSIF

=
σfPARchl
fPARchl

= ��
σSIF
SIF

�
2

+ �
σiPAR
iPAR

�
2

+ �
σ𝜙𝜙𝑓𝑓
𝜙𝜙𝑓𝑓

�
2

+ �
σ𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒
𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒

�
2
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where σiPAR
iPAR

 can be calculated from the approximation of cos(SZA) (Fig. S10), 
σ𝜙𝜙𝑓𝑓
𝜙𝜙𝑓𝑓

 and 
σ𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒
𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒

 can 

be obtained from the SCOPE simulation. 
 
To evaluate the performance of the four OVAIs as proxies of fPARSIF, we first spatially averaged the 
both fPARSIF and each OVAIs for each month. This average will greatly reduce the uncertainty in 
both fPARSIF and OVAIs. Except for the cropland in Southern Hemisphere which only include 382 
0.5° × 0.5° gridcells, all other biome types have at least 2000 gridcells. which will reduce the 
uncertainty of fPARSIF to around or less than 0.01 CV (0.45/√2000). The uncertainties of the OVAIs 
in this comparison is also less than 0.01 CV. Therefore, the uncertainties from the data sources of 
this comparison (Fig. 1) are ignored. 
 
The uncertainties of using OVAIs as a proxy of fPARSIF come from two major aspects: (1) the 
uncertainty in the linear regression, which can be quantified as an error term ϵ, and (2) the 
uncertainty in the independent variables, i.e., OVAIs. The fPARSIF can be expressed as: 

fPARSIF = 𝑎𝑎 × (OVAI − c) + ϵ 
Or using OVAIm as the proxy of fPARchl: 

OVAIm = OVAI − c +
ϵ
𝑎𝑎

 

The error term ϵ for each OVAI can be estimated from the linear regression between fPARSIF and 
OVAIs with fixed intercepts c (0.2 for fPARmod15 and NDVI, 0.1 for EVI and 1 for MTCI, Fig. S6). The 
uncertainty of fPARSIF (fPARchl) estimated from OVAIs (OVAIm) can be calculated from below: 

σOVAIm = �σOVAI2 + �
σϵ
𝑎𝑎
�
2

 

Since we used five 8-day (four 10-day for MTCI) average of OVAIm to compare with LUEeco, this 
average will reduce the uncertainty contributed from the OVAI (σOVAI). The adjusted uncertainty 
(σOVAIm′) is calculated below: 

σOVAIm′ = �σOVAI
2

𝑛𝑛
+ �

σϵ
𝑎𝑎
�
2

 

where 𝑛𝑛 is 5 for fPARmod15, NDVI and EVI, and 4 for MTCI. The result for these uncertainties are 
shown in Table S3.  
 
The uncertainties of regression slopes in LUEcanopy and LUEchl estimation comes from both the 
uncertainty in GPP from flux tower, and the uncertainty of fPARcanopy and fPARchl (OVAIm). For a 
linear regression equation which passes the origin (0, 0) y = 𝑎𝑎x, the regression slope 𝑎𝑎 can be 
calculated as: 

𝑎𝑎 =
∑𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖
∑ 𝑥𝑥𝑖𝑖2

 

Based on the error propagation law, the uncertainty of 𝑎𝑎 caused by the uncertainty of 𝑥𝑥 (𝜎𝜎𝑥𝑥) and 
𝑦𝑦 (𝜎𝜎𝑦𝑦) will be estimated as: 
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𝜎𝜎𝑎𝑎2 = ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜎𝜎𝑥𝑥𝑗𝑗�
2𝑛𝑛

𝑗𝑗=1

+ ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑗𝑗

𝜎𝜎𝑦𝑦𝑗𝑗�
2𝑛𝑛

𝑗𝑗=1

= ��
𝑦𝑦𝑗𝑗

∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1

−
2𝑥𝑥𝑗𝑗

�∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 �2

�
2

𝜎𝜎𝑥𝑥𝑗𝑗
2

𝑛𝑛

𝑗𝑗=1

+ ��
𝑥𝑥𝑗𝑗

∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1

�
2

𝜎𝜎𝑦𝑦𝑗𝑗
2

𝑛𝑛

𝑗𝑗=1

 

where the uncertainty of 𝑦𝑦𝑗𝑗  (𝜎𝜎𝑦𝑦𝑗𝑗) is regarded as 10% of 𝑦𝑦 (LUEeco); the uncertainty of 𝑥𝑥𝑗𝑗  (𝜎𝜎𝑥𝑥𝑗𝑗) is a 

fixed value from Table S3. 
 
The CV is used to evaluate how convergent of the different definition of LUE (LUEeco, LUEcanopy, 
LUEchl), and can be calculated as: 

CV =

�∑ �𝑙𝑙𝑖𝑖 − 𝑙𝑙�̅2𝑛𝑛
𝑖𝑖=1
𝑛𝑛 − 1
𝑙𝑙 ̅

 

where 𝑙𝑙  ̅ is the mean of 𝑙𝑙 which can be calculated from: 

𝑙𝑙 ̅ =
∑ 𝑙𝑙𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 

The uncertainty of 𝑙𝑙  ̅ (σ𝑙𝑙̅2) is calculated as: 

σ𝑙𝑙̅2 =
1
𝑛𝑛
�σ𝑙𝑙𝑖𝑖

2
𝑛𝑛

𝑖𝑖=1

 

where the σ𝑙𝑙𝑖𝑖  denotes the uncertainty of LUE estimated for each biome type. The error 
propagation law allows us to calculate the uncertainties in CV of 𝑙𝑙 as: 

σCV2 = ��
∂CV
∂𝑙𝑙𝑖𝑖

𝜎𝜎𝑙𝑙𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1

+ �
∂CV
∂𝑙𝑙 ̅

σ𝑙𝑙 ̅�
2

= �

⎝

⎛ 𝑙𝑙𝑗𝑗 − 𝑙𝑙 ̅

𝑙𝑙√̅𝑛𝑛 − 1
1

�∑ �𝑙𝑙𝑖𝑖 − 𝑙𝑙�̅2𝑛𝑛
𝑖𝑖=1

𝜎𝜎𝑙𝑙𝑗𝑗
⎠

⎞

2
𝑛𝑛

𝑗𝑗=1

+

⎝

⎜
⎜
⎜
⎛

1
√𝑛𝑛 − 1

∑ �𝑙𝑙 ̅ − 𝑙𝑙𝑗𝑗�𝑛𝑛
𝑗𝑗=1

�∑ �𝑙𝑙𝑖𝑖 − 𝑙𝑙�̅2𝑛𝑛
𝑖𝑖=1

𝑙𝑙 ̅ − �∑ �𝑙𝑙𝑘𝑘 − 𝑙𝑙�̅2𝑛𝑛
𝑘𝑘=1

𝑙𝑙2̅
σ𝑙𝑙̅

⎠

⎟
⎟
⎟
⎞

2

= ��
1

𝑛𝑛 − 1
�
𝑙𝑙𝑗𝑗 − 𝑙𝑙 ̅

𝑙𝑙 ̅
�
2 1

∑ �𝑙𝑙𝑖𝑖 − 𝑙𝑙�̅2𝑛𝑛
𝑖𝑖=1

𝜎𝜎𝑙𝑙𝑗𝑗
2�

𝑛𝑛

𝑗𝑗=1

+
1

𝑛𝑛 − 1
∑ �𝑙𝑙𝑘𝑘 − 𝑙𝑙�̅2𝑛𝑛
𝑘𝑘=1

𝑙𝑙4̅
σ𝑙𝑙̅2 
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Text S4. Land cover dataset for major biome types 

The land cover classification is based on the IGBP classification scheme from the MCD12C1 C5 
dataset for 2007 to 2013 (Friedl et al., 2010). The MCD12C1 data have a spatial resolution of 0.05° ×
0.05°, and for each gridcell, 16 numbers correspond to the areal percentages of 16 IGBP land cover 
types. We further aggregated this dataset to 0.5° × 0.5° to match the spatial resolution of SIF and 
recalculated the areal percentages of 16 biome types for each 0.5° × 0.5° gridcell. If one land 
cover type occupies more than 80% of the area of a 0.5° × 0.5° gridcell, this gridcell is considered 
a “pure” pixel and further used for the biome-based statistical analysis (Fig. S11). 13 vegetated land 
cover types for both MCD12C1 and flux tower sites were aggregated into four major biome types. 
Forests include DBF, EBF, ENF, DNF, and MF. Shrublands include OSH, CSH, and WSA. Grasslands 
include GRA, SAV, and WET. Croplands include CRO and NVM. A full list of these acronyms can be 
found in Table S2. 
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Figure S1. Idealized representation of the radiation partitioning in plant canopies for light use 
efficiency models. Left side is the LUE models based on the total PAR or PAR absorbed by canopy 
(APARcanopy), right side is the LUE models based on PAR absorbed by chlorophyll of the entire 
canopy (fPARchl). This figure is modified from Fig. 1 in Porcar-Castell et al. (2014). 

 

 

Figure S2. A flowchart showing the evaluation of spatio-temporal convergence of 𝛆𝛆𝐦𝐦𝐦𝐦𝐦𝐦 based on 
radiation absorption by chlorophylls of the canopy.  
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Figure S3. The relationship between (a) fluorescence efficiency and APARchl, and (b) SIF740 and 
APARchl using the simulation from the SCOPE model.  

 

 

Figure S4. The variation of (a) fluorescence efficiency (in J nm-1 sr-1 mol-1) and (b) fPARchl under all 
possible combination of LAI, Cab and Cdm values in Table S6. 
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Figure S5. The spatial distribution of the flux tower sites used in this study. The biome types are 
regrouped into four types to correspond to the biome type in the SIF analysis. Forest includes ENF, 
EBF, DNF, DBF, and MF; shrubland includes CSH, OSH, and WSA; grassland includes SAV, GRA, 
WET; cropland includes CRO and CNV. For the full name of the vegetation types and the IGBP 
classification of land cover types, please refer to Table S2. K34 and K67 are two amazon sites used 
for seasonality analysis. 
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Figure S6. Spatial pattern (left column) and frequency distribution (right column) of the regression 
intercept (c in Eq. 6). (a, e) fPAR, (b, f) NDVI, (c, g) EVI, (d, h) MTCI. The dots with horizontal bars at 
the top of frequency distribution figures (e-h) represent the means and standard deviations within 
each biome type. The SIF and OVAIs data from 2007 to 2015 (2007–2012 for MTCI) were used to 
build the relationship.  
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Figure S7. Spatial pattern (left column) and frequency distribution (right column) of the coefficient 
of determination (R2) between fPARSIF and four optical vegetation activity indicators (OVAIs). (a, e) 
fPAR, (b, f) NDVI, (c, g) EVI and (d, h) MTCI. The SIF and OVAIs data from 2007 to 2015 (2007–2012 
for MTCI) were used to build the relationship. The low correlation coefficients in tropical regions are 
caused by high cloud cover and weak seasonality of vegetation. 
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Figure S8. Estimation of maximum daily light use efficiency (regression slopes) based on different 
fPAR-NDVI relationship (with different intercept) for clear-day (a-d) and cloudy-day (e-h). The 
coefficient of variation of maximum light use efficiency across biome types for clear-day (i) and 
cloudy-day (j). 
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Figure S9. The linear regression with fixed OVAI intercept, same dataset from Fig. 1 is used. The 
RMSE value were used as the uncertainty of regression for error propagation analysis.  
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Figure S10. Comparison between the estimated iPAR at 9:30 am using cos(SZA) and observed iPAR 
from flux tower sites. This comparison used monthly averaged iPAR values to match the temporal 
resolution of GOME2 SIF product. Altogether 127 sites were used.  

 
 

 

Figure S11. The land cover type at the resolution of 𝟎𝟎.𝟓𝟓° × 𝟎𝟎.𝟓𝟓° for year 2007. Only the “pure” 
pixels which are used for further analysis are shown. White areas are barren and ice covered; grey 
are mixed pixels. For a complete list of the legend acronyms, please refer to Table S2. 
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OVAIs Product Calculation Original 
spatial 
resolution 

Temporal 
resolution 

Data quality check Uncertainty 
(absolute 
value) 

Spatial 
extent 

fPARmod15 MOD15A2H 
C6 

spectral information from 
MODIS surface reflectance at 
648 nm and 858 nm and 
radiative transfer equation 
based Look-up-Table 

500 m 8-day both MOD09A1 
QA and 
MOD15A2H QA 

0.151 global 

NDVI MOD09A1 
C6 for site, 
MOD13C2 
C6 for 
regional 

𝜌𝜌858.5 − 𝜌𝜌645
𝜌𝜌858.5 + 𝜌𝜌645

 500 m 8-day for 
site, 
monthly for 
regional 

MOD09A1 QA for 
site, MOD13C2 
Pixel Reliability for 
regional 

0.0252 global 

EVI MOD09A1 
C6 for site, 
MOD13C2 
C6 for 
regional 

2.5
𝜌𝜌858.5 − 𝜌𝜌645

1 + 𝜌𝜌858.5 + 6𝜌𝜌645 − 7.5𝜌𝜌469
 500 m 8-day for 

site, 
monthly for 
regional 

MOD09A1 QA for 
site, MOD13C2 
Pixel Reliability for 
regional 

0.0152 global 

MTCI NEODC 
MTCI Level 3 

𝜌𝜌753.75 + 𝜌𝜌708.75

𝜌𝜌708.75 − 𝜌𝜌681.25
 ~5000 m 8-day for 

2002-2007, 
10-day for 
2008-2012 

N/A 0.13 180°W-
180°E, 
80°S-
80°N 

1Yan et al. (2016); 2https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13; 3Elsobky (2015), this number is a rough estimate across 
different biomes. 

Table S1. Optical vegetation activity indices (OVAIs) used in this study. 𝝆𝝆 with a subscription number indicate the satellite retrieved band 
reflectance centered at this wavelength. 
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Site ID Site name Latitude Longitude Country 
IGBP 
type 

Years used 

AR-SLu San Luis -33.4648 -66.4598 Argentina MF 2010 

AR-Vir Virasoro -28.2395 -56.1886 Argentina ENF 2012 

AT-Neu 
Neustift/Stubai 
Valley 

47.1167 11.3175 Austria GRA 
2002-2005, 
2007-2009, 
2011 

AU-Ade Adelaide River -13.0769 131.1178 Australia WSA 2007-2009 

AU-ASM Alice Springs -22.283 133.249 Australia ENF 2010-2012 

AU-Cpr Calperum -34.0021 140.5891 Australia SAV 2011-2013 

AU-Cum Cumberland Plains -33.6133 150.7225 Australia EBF 2013 

AU-DaP Daly River Savanna -14.0633 131.3181 Australia GRA 
2008-2011, 
2013 

AU-DaS Daly River Cleared -14.1593 131.3881 Australia SAV 
2008, 2009, 
2011-2013 

AU-Dry Dry River -15.2588 132.3706 Australia SAV 2010-2013 

AU-Emr 
Emerald, 
Queensland, 
Australia 

-23.8587 148.4746 Australia GRA 2011-2013 

AU-Fog Fogg Dam -12.5452 131.3072 Australia WET 2007, 2008 

AU-
GWW 

Great Western 
Woodlands, 
Western Australia, 
Australia 

-30.1913 120.6541 Australia SAV 2013 

AU-RDF 
Red Dirt Melon 
Farm, Northern 
Territory 

-14.5636 132.4776 Australia WSA 2011, 2012 

AU-Rig Riggs Creek -36.6499 145.5759 Australia GRA 2012, 2013 

AU-Rob 
Robson Creek, 
Queensland, 
Australia 

-17.1175 145.6301 Australia EBF 2014 

AU-Tum Tumbarumba -35.6566 148.1517 Australia EBF 
2004, 2006-
2013 

AU-Whr Whroo -36.6732 145.0294 Australia EBF 2012, 2013 

BE-Bra 
Brasschaat (De 
Inslag Forest) 

51.3092 4.5206 Belgium MF 
2000, 2005-
2009, 2011-
2013 

BE-Lon Lonzee 50.5516 4.7461 Belgium CRO 
2004, 2005, 
2007-2009, 
2011-2013 

BE-Vie Vielsalm 50.3051 5.9981 Belgium MF 
2002, 2003, 
2005-2010, 
2012-2014 

BR-Sa3 
Santarem-Km83-
Logged Forest 

-3.018 -54.9714 Brazil EBF 2001-2003 
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CA-Gro 

Ontario - 
Groundhog River, 
Boreal Mixedwood 
Forest. 

48.2167 -82.1556 Canada MF 
2004-2009, 
2013 

CA-NS1 UCI-1850 burn site 55.8792 -98.4839 Canada ENF 2002-2005 

CA-NS3 UCI-1964 burn site 55.9117 -98.3822 Canada ENF 2004, 2005 

CA-NS4 
UCI-1964 burn site 
wet 

55.9117 -98.3822 Canada ENF 2003-2005 

CA-NS5 UCI-1981 burn site 55.8631 -98.485 Canada ENF 2002-2005 

CA-NS6 UCI-1989 burn site 55.9167 -98.9644 Canada OSH 
2002, 2004, 
2005 

CA-NS7 UCI-1998 burn site 56.6358 -99.9483 Canada OSH 
2002, 2004, 
2005 

CA-Qfo 
Quebec - Eastern 
Boreal, Mature 
Black Spruce. 

49.6925 -74.3421 Canada ENF 
2004-2006, 
2008-2010 

CA-SF1 

Saskatchewan - 
Western Boreal, 
forest burned in 
1977. 

54.485 -105.818 Canada ENF 
2003, 2005, 
2006 

CA-SF2 

Saskatchewan - 
Western Boreal, 
forest burned in 
1989. 

54.2539 -105.878 Canada ENF 2002-2005 

CA-SF3 

Saskatchewan - 
Western Boreal, 
forest burned in 
1998. 

54.0916 -106.005 Canada OSH 
2001, 2003-
2006 

CA-TP2 

Ontario - Turkey 
Point 1989 
Plantation White 
Pine 

42.7744 -80.4588 Canada ENF 2003-2005 

CG-Tch Tchizalamou -4.2892 11.6564 
Republic of 
Congo 

SAV 
2006, 2007, 
2009 

CH-Cha Chamau grassland 47.2102 8.4104 Switzerland GRA 
2007, 2008, 
2010-2012 

CH-Fru Fruebuel grassland 47.1158 8.5378 Switzerland GRA 
2007, 2008, 
2010-2012 

CH-Oe1 Oensingen1 grass 47.2858 7.7319 Switzerland GRA 2002-2008 

CN-Cha Changbaishan 42.4025 128.0958 China MF 2003-2005 

CN-Cng Changling 44.5934 123.5092 China GRA 2008, 2010 

CN-Dan Dangxiong 30.4978 91.0664 China GRA 2004, 2005 

CN-Din Dinghushan 23.1733 112.5361 China EBF 2003, 2005 

CN-Du2 
Duolun_grassland 
(D01) 

42.0467 116.2836 China GRA 2008 

CN-Ha2 Haibei Shrubland 37.6086 101.3269 China WET 2003-2005 

CN-HaM 
Haibei Alpine Tibet 
site 

37.6167 101.3 China GRA 2002, 2003 
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CN-Qia Qianyanzhou 26.7414 115.0581 China ENF 2003-2005 

CN-Sw2 
Siziwang Grazed 
(SZWG) 

41.7902 111.8971 China GRA 2011 

CZ-BK1 
Bily Kriz- Beskidy 
Mountains 

49.5047 18.5411 
Czech 
Republic 

ENF 
2003-2005, 
2007-2012 

CZ-BK2 Bily Kriz- grassland 49.4944 18.5429 
Czech 
Republic 

GRA 2006-2011 

DE-Akm Anklam 53.8662 13.6834 Germany WET 2011-2013 

DE-Gri 
Grillenburg- grass 
station 

50.9495 13.5125 Germany GRA 
2004-2006, 
2008-2014 

DE-Hai Hainich 51.0792 10.453 Germany DBF 
2000-2005, 
2007-2009, 
2012 

DE-Kli 
Klingenberg - 
cropland 

50.8929 13.5225 Germany CRO 
2004-2006, 
2009, 2010, 
2014 

DE-Lkb Lackenberg 49.0996 13.3047 Germany ENF 
2009, 2012, 
2013 

DE-Obe Oberbarenburg 50.7836 13.7196 Germany ENF 2008-2014 

DE-RuS Selhausen Juelich 50.8657 6.4472 Germany CRO 2011-2014 

DE-Spw Spreewald 51.8923 14.0337 Germany WET 
2010-2012, 
2014 

DE-Tha 
Anchor Station 
Tharandt - old 
spruce 

50.9636 13.5669 Germany ENF 
2000, 2001, 
2003-2005, 
2007-2014 

DE-Zrk Zarnekow 53.8759 12.889 Germany WET 2013, 2014 

DK-Eng Enghave 55.6905 12.1918 Denmark GRA 2005 

DK-NuF Nuuk Fen 64.1308 -51.3861 Denmark WET 
2008, 2010, 
2012-2014 

DK-Sor 
Soroe- 
LilleBogeskov 

55.4859 11.6446 Denmark DBF 
2000, 2002-
2012 

DK-ZaF Zackenberg Fen 74.4791 -20.5557 Denmark WET 
2008, 2010, 
2013, 2014 

DK-ZaH Zackenberg Heath 74.4732 -20.5503 Denmark GRA 
2002, 2003, 
2005, 2006, 
2008 

ES-Amo Amoladeras 36.8336 -2.2523 Spain OSH 2010, 2011 

ES-LgS Laguna Seca 37.0979 -2.9658 Spain OSH 2007-2009 

ES-LJu Llano de los Juanes 36.9266 -2.7521 Spain OSH 
2004, 2006, 
2008, 2010, 
2011, 2013 

FI-Hyy Hyytiala 61.8475 24.295 Finland ENF 
2000, 2001, 
2003-2005, 
2008-2014 

FI-Jok 
Jokionen 
agricultural field 

60.8986 23.5135 Finland CRO 2001, 2003 

FR-Gri 
Grignon (after 
6/5/2005) 

48.8442 1.9519 France CRO 
2005-2011, 
2014 
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FR-Pue Puechabon 43.7414 3.5958 France EBF 2001-2012 

GF-Guy Guyaflux 5.2788 -52.9249 
French 
Guyana 

EBF 
2004-2006, 
2008-2012 

GH-Ank Ankasa 5.2685 -2.6942 Ghana EBF 
2011, 2012, 
2014 

IT-CA1 Castel d'Asso1 42.3804 12.0266 Italy DBF 2011, 2012 

IT-CA2 Castel d'Asso2 42.3772 12.026 Italy GRA 2011, 2013 

IT-CA3 Castel d'Asso 3 42.38 12.0222 Italy DBF 2013 

IT-Cp2 Castelporziano2 41.7043 12.3573 Italy EBF 2013 

IT-Isp Ispra ABC-IS 45.8126 8.6336 Italy DBF 2014 

IT-La2 Lavarone2 45.9542 11.2853 Italy ENF 2001 

IT-Lav 
Lavarone (after 
3/2002) 

45.9562 11.2813 Italy ENF 2003-2011 

IT-Noe 
Sardinia/Arca di 
Noè 

40.6061 8.1515 Italy CSH 
2004-2008, 
2010 

IT-PT1 
Zerbolo-Parco 
Ticino- Canarazzo 

45.2009 9.061 Italy DBF 2002, 2004 

IT-Ren 
Renon/Ritten 
(Bolzano) 

46.5869 11.4337 Italy ENF 
2001, 2002, 
2004-2010, 
2012, 2013 

IT-Ro1 Roccarespampani 1 42.4081 11.93 Italy DBF 
2001-2004, 
2006-2008 

IT-Ro2 Roccarespampani 2 42.3903 11.9209 Italy DBF 
2002-2008, 
2010, 2012 

IT-SRo San Rossore 43.7279 10.2844 Italy ENF 
2002, 2003, 
2006-2012 

IT-Tor Torgnon 45.8444 7.5781 Italy GRA 
2008-2010, 
2012, 2013 

JP-MBF 
Moshiri Birch Forest 
Site 

44.3869 142.3186 Japan DBF 2004 

JP-SMF 
Seto Mixed Forest 
Site 

35.2617 137.0788 Japan MF 
2003, 2005, 
2006 

MY-PSO 
Pasoh Forest 
Reserve (PSO) 

2.973 102.3062 Malaysia EBF 2003-2009 

NL-Hor Horstermeer 52.2404 5.0713 Netherlands GRA 
2005, 2007, 
2008, 2010 

NL-Loo Loobos 52.1666 5.7436 Netherlands ENF 
2000-2002, 
2004-2014 

PA-SPn Sardinilla Plantation 9.3181 -79.6346 Panama DBF 2007, 2008 

RU-Che Cherskii 68.613 161.3414 Russia WET 2002-2004 

RU-Cok Chokurdakh 70.8291 147.4943 Russia OSH 
2003, 2006, 
2007, 2009, 
2011, 2012 

RU-Fyo 
Fyodorovskoye wet 
spruce stand 

56.4615 32.9221 Russia ENF 
2000-2006, 
2008, 2009, 
2011-2013 

RU-Ha1 
Ubs Nur- Hakasija-
grassland 

54.7252 90.0022 Russia GRA 2003, 2004 



 
 

21 
 

RU-Sam 
Samoylov Island- 
Lena Delta 

72.3738 126.4958 Russia GRA 
2005, 2006, 
2008 

RU-SkP Spasskaya Pad larch 62.255 129.168 Russia DNF 2012-2014 

RU-Vrk Seida/Vorkuta 67.0547 62.9405 Russia CSH 2008 

SD-Dem Demokeya 13.2829 30.4783 Sudan SAV 2007-2009 

SE-St1 
Stordalen Forest- 
Mountain Birch 

68.3542 19.0503 Sweden WET 2012, 2014 

US-ARM 
ARM Southern 
Great Plains site- 
Lamont 

36.6058 -97.4888 USA CRO 
2003, 2004, 
2006-2010, 
2012 

US-Blo Blodgett Forest 38.8953 -120.633 USA ENF 
2003, 2004, 
2006, 2007 

US-CRT 
Curtice Walter-
Berger cropland 

41.6285 -83.3471 USA CRO 2011-2013 

US-Goo Goodwin Creek 34.2547 -89.8735 USA GRA 
2002-2004, 
2006 

US-Ha1 
Harvard Forest EMS 
Tower (HFR1) 

42.5378 -72.1715 USA DBF 
2000, 2001, 
2003-2012 

US-Ivo Ivotuk 68.4865 -155.75 USA WET 
2004, 2006, 
2007 

US-Los Lost Creek 46.0827 -89.9792 USA WET 
2001-2008, 
2010, 2014 

US-Me6 
Metolius Young 
Pine Burn 

44.3233 -121.608 USA ENF 2010-2012 

US-MMS 
Morgan Monroe 
State Forest 

39.3232 -86.4131 USA DBF 
2000-2006, 
2009, 2010, 
2013, 2014 

US-Myb Mayberry Wetland 38.0498 -121.765 USA WET 2011-2014 

US-Ne2 
Mead - irrigated 
maize-soybean 
rotation site 

41.1649 -96.4701 USA CRO 
2002, 2004, 
2006, 2008 

US-Ne3 
Mead - rainfed 
maize-soybean 
rotation site 

41.1797 -96.4397 USA CRO 
2002, 2004, 
2006, 2008, 
2010, 2012 

US-Oho Oak Openings 41.5545 -83.8438 USA DBF 
2004-2011, 
2013 

US-SRM Santa Rita Mesquite 31.8214 -110.866 USA WSA 
2004-2008, 
2010-2014 

US-Syv 
Sylvania Wilderness 
Area 

46.242 -89.3477 USA MF 
2002, 2012-
2014 

US-Ton Tonzi Ranch 38.4316 -120.966 USA WSA 
2002-2007, 
2009, 2012-
2014 

US-Tw3 Twitchell Alfalfa 38.1159 -121.647 USA CRO 2013, 2014 

US-UMd UMBS Disturbance 45.5625 -84.6975 USA DBF 2008-2014 

US-Var Vaira Ranch- Ione 38.4133 -120.951 USA GRA 
2000-2007, 
2009, 2011-
2014 
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US-WCr Willow Creek 45.8059 -90.0799 USA DBF 

2000, 2001, 
2003-2006, 
2011, 2013, 
2014 

US-Whs 
Walnut Gulch Lucky 
Hills Shrub 

31.7438 -110.052 USA OSH 
2007, 2008, 
2010, 2011, 
2013, 2014 

US-Wkg 
Walnut Gulch 
Kendall Grasslands 

31.7365 -109.942 USA GRA 
2006-2008, 
2010-2014 

US-WPT 
Winous Point North 
Marsh 

41.4646 -82.9962 USA WET 2011-2013 

ZA-Kru 
Skukuza- Kruger 
National Park 

-25.0197 31.4969 South Africa SAV 
2000, 2009-
2012 

ZM-Mon Mongu -15.4378 23.2528 Zambia DBF 2007-2009 

Table S2. Flux tower sites used in this study. ENF: evergreen needleleaf forest; EBF: evergreen 
broadleaf forest; DNF: deciduous needleleaf forest; DBF: deciduous broadleaf forest; MF: 
mixed forest; CSH: closed shrubland; OSH: open shrubland; WSA: woody savannas; GRA: 
grassland; SAV: savannas; WET: permanent wetland; CRO: cropland; CNV: cropland/natural 
vegetation mosaic.  

 
 

Variables Estimated 
from 

Uncertainty (represented as 
s.d. or RMSE) 

iPAR cos(SZA) 85.6 W m-2 
fPARSIF

1 SIF 0.34 
OVAIm

2 
(approximation of 
fPARchl using 
OVAI) 

fPARmod15 0.17 (0.11) 
NDVI 0.09 (0.08) 
EVI 0.03 (0.03) 
MTCI 0.18 (0.16) 

1fPARSIF considered the uncertainty of FE. 2These uncertainties are estimated for the 8-day (10-
day) temporal resolution, the values in the parentheses are adjusted for peak growing season 
period (five 8-day or four 10-day) to compare with LUEeco. 

Table S3. The uncertainties of approximations used in our study.  

 
  

fPAR NDVI EVIm MTCIm 
clear 0.00722  0.00661  0.00551  0.00541  
cloudy 0.00692  0.00653  0.00671  0.00590  

Table S4. Root mean square error (RMSE) for the regressions between LUEPAR and OVAI or 
OVAIm, with all biome types combined together.  

 
  

fPAR NDVI EVIm MTCIm 
clear 0.40  0.49  0.64  0.69  
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cloudy 0.20  0.29  0.25  0.40  

Table S5. Coefficient of determination (R2) for the regressions between LUEPAR and OVAI or 
OVAIm, with all biome types combined together.  

 
 

Parameter Symbol Value Range 
Chlorophyll a+b content [µg cm-2] Cab 0.001, 0.002, 0.004, 0.008, 0.016 0.001 - 0.02 
Dry matter content [g cm-2] Cdm 0.001, 0.002, 0.004, 0.008, 0.016, 

0.032, 0.064 
0.001 - 0.05 

Leaf area index [m2 m-2] LAI 1, 2, 3, 4, 5, 6 1 - 6 

Table S6. Parameters settings used in the second run of the SCOPE model with fixed irradiance 
but variable parameters which result in different 𝒇𝒇𝒆𝒆𝒆𝒆𝒆𝒆 values.  
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