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Abstract— In this paper we describe the Combined Filter, a
judicious combination of Extended Kalman (EKF) and Extended
Information filters (EIF) that can be used to execute highly
efficient SLAM in large environments. With the CF, filter
updates can be executed in as low as O(log n) as compared
with other EKF and EIF based algorithms: O(n2) for Map
Joining SLAM, O(n) for Divide and Conquer (D&C) SLAM,
and O(n1.5) for the Sparse Local Submap Joining Filter (SLSJF).
We also study an often overlooked problem in computationally
efficient SLAM algorithms: data association. In situations in
which only uncertain geometrical information is available for
data association, the CF Filter is as efficient as D&C SLAM,
and much more efficient than Map Joining SLAM or SLSJF.
If alternative information is available for data association, such
as texture in visual SLAM, the CF Filter outperforms all other
algorithms. In large scale situations, both algorithms based on
Extended Information filters, CF and SLSJF, avoid computing
the full covariance matrix and thus require less memory, but
still the CF Filter is the more computationally efficient. Both
simulations and experiments with the Victoria Park dataset, the
DLR dataset, and an experiment using visual stereo are used to
illustrate the algorithms’ advantages.

I. INTRODUCTION

In recent years, researches have devoted much effort to

develop algorithms that improve the computational efficiency

of SLAM, with the goal of being able to map large scale

environments in real time [1]. One important contribution has

been the idea of splitting the full map into local maps and

then put the pieces back together in some way. Decoupled

Stochastic Mapping [9], Constant Time SLAM [10] and the

ATLAS system [2] are local mapping solutions close to

constant time, although through approximations that reduce

precision. Map Joining SLAM [15] and the Constrained Local

Submap Filter [16] are exact solutions (except for lineariza-

tions) that require periodical O(n2) updates. Exact solutions

also include Treemap [5], Divide and Conquer (D&C) SLAM

[14], Tectonic SAM [13] and Sparse Local Submap Joining

Filter (SLSJF) SLAM [8]. Given a map of n features, the

classical EKF SLAM algorithm is known to have a cost

of O(n2) per step. Two recent algorithms have provided

important reductions in computational cost: D&C SLAM has

an amortized cost O(n) per step, SLSJF SLAM reports a

cost O(n1.5) per step in the worst cases. The Treemap has
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a cost O(log n), although with topological restrictions on the

environment, and a rather complex implementation.

In this paper we study the Combined Filter SLAM (CF

SLAM), first introduced in [3], an algorithm to carry out

large scale SLAM with computational cost as low as O(log n)
per step, without approximations other than linearizations.

The CF SLAM algorithm is a judicious combination of

Extended Kalman and Extended Information filters, combined

with a Divide and Conquer local mapping strategy. Being a

local mapping algorithm, it provides more consistent results,

compared with Treemap, reported to have the same O(log n)
cost, but computing an absolute map [7]. CF SLAM is also

conceptually simple and rather easy to implement. In this

paper we show that the CF SLAM can also compute the data

association and remain much more efficient than other EKF

and EIF based SLAM algorithms.

This paper is organized as follows: the next section contains

a brief description of the CF SLAM algorithm. In section III

we describe the process to solve data association in the CF

algorithm given either geometrical information or appearance-

only information. In section IV we test the algorithm using

four experiments, one simulated environment, the Victoria

Park dataset, the DLR dataset and an experiment done with a

stereo camera-in-hand. In the final section we summarize the

results and draw the fundamental conclusions of this work.

II. COMBINED FILTER SLAM

The Combined Filter SLAM algorithm has three main

highlights (see algorithm 1):

Algorithm 1 CF SLAM Algorithm

maps← {}
while data from sensor do

map← ekf slam Section: II-A
if isempty(maps) then

maps← {map}
else

while size(map) ≥ size(maps{last}) Section: II-C
or global map is needed do

map← eif map join(maps{last}, map) Section: II-B
maps{last} ← {}

end while
maps← {maps, map}

end if
end while
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EKF-SLAM
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∂g(ut,μt−1)
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∣∣∣
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Jacobians Gt =
∂g(ut,μt−1)

∂ut
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∂h(μt|t−1)
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Prediction μt|t−1 = g(ut, μt−1)

Σt|t−1 = FtΣt−1F T
t + GtRt−1GT

t
Innovation νt = zt − h(μt|t−1)

St = HtΣt|t−1HT
t + Qt

Test χ2 D2 = νT
t S−1

t νt

Kt = Σt|t−1HT
t /St

Update Σt = (I −KtHt)Σt|t−1

μt = μt|t−1 + Ktνt

TABLE I

OPERATIONS CARRIED OUT USING EKF.

A. Local Map Building with Extended Kalman Filters

Local mapping is carried out using the well known Extended

Kalman Filter (EKF). In EKF SLAM, a map (μ,Σ) includes

the state μ to be estimated, which contains the current vehicle

location and the location of a set of environment features.

The covariance of μ, represented by Σ, gives an idea of

the precision in the estimation, 0 meaning total precision.

EKF SLAM is an iterative prediction-sense-update process

whose formulation we believe is widely known and is thus

summarized in Table I. In CF SLAM, a sequence of maps

of constant size p is produced. Each local map (μi,Σi) is

also stored in information form (ξi,Ωi), with Ω = Σ−1 and

ξ = Σ−1μ; both the information vector and the information

matrix are computed in O(p3), constant with respect to the

total map size n. Each local map only keeps the final pose

of the robot. EKF SLAM in local maps allows robust data

association, e.g. with JCBB [12], and small local maps remain

consistent.

B. Map Joining SLAM with Extended Information Filters

Local map Joining is carried out using the Extended Infor-

mation filter (EIF). As reported in the Sparse Local Submap

Joining filter (SLSJF) SLAM [8], given two consecutive local

maps (μ1,Σ1) and (μ2,Σ2) to join, the resulting map (ξ,Ω)
is predicted in the information form with the information of

the first map, and an initial 0 (no information) from the second

map. The innovation is computed considering the second map

as a set of measurements for the full map (z = μ2, Q = Ω−1
2 ),

and the final update step computes the information state ξ and

information matrix Ω using the standard EIF equations, see

table II (see [3] or [8] for more details). Keeping the vehicle

locations from each local map in the final map allows to

exploit the exact sparse structure of the information matrix

and the join can be carried out in time linear with the final

size of the map. . The covariance matrix is not kept after joins

at the lower level.

C. Divide and Conquer Strategy

1) Best case: exploration: The computational cost of CF

SLAM is studied in detail in [3]. For completeness, here we

briefly summarize the most important aspects. As in the Divide

and Conquer (D&C)SLAM algorithm [14], in CF SLAM map

joining operations are carried out in a hierarchical binary tree

Join with EIF

Jacobians G =
∂g(μ+)

∂μ+

∣∣∣
μ̂+

H =
∂h(μ−)

∂μ−

∣∣∣
μ̂−

μ− = g(μ1, μ2)

Initialization ξ− =

[
ξ1
0

]

Ω− =

[
Ω1 0
0 0

]
Innovation ν = μ2 − h(μ−)

Q−1 = Ω2

Ω = Ω− + HT Ω2H
Update ξ = ξ− + HT Ω2(ν + Hμ−)

μ = Ω\ξ
TABLE II

OPERATIONS CARRIED OUT FOR LOCAL MAP JOINING USING THE

EXTENDED INFORMATION FILTER.

fashion, instead of a sequential fashion (see algorithm 1). The

leafs of the binary tree represent the sequence of l local maps

of constant size p, computed with standard EKF SLAM, with

cost O(p3) each. These maps are joined pairwise to compute

l/2 local maps of double their size (2p), with cost O(2p) each

join, which will in turn be joined pairwise into l/4 local maps

of size 4p, with cost O(4p) each join, until finally two local

maps of size n/2 will be joined into one full map of size n,

the final map, with cost O(n).
During exploration, with the D&C strategy the total com-

putational complexity of CF SLAM is:

C = O
⎛
⎝p3l +

log2 l∑
i=1

l

2i
(2i p)

⎞
⎠

= O
⎛
⎝p2n +

log2 n/p∑
i=1

n

⎞
⎠

= O (
p2n + n log2 n/p

)
= O (n log2 n)

CF SLAM offers a reduction in the total computational cost

to O (n log n), as compared with the total cost O (
n3

)
for

EKF SLAM, and O (
n2

)
for D&C SLAM and SLSJF SLAM.

Furthermore, as in D&C SLAM, the map to be generated at

step t will not be required for joining until step 2 t. This allows

us to amortize the cost O(t) at this step by dividing it up

between steps t+1 to 2 t in equal O(1) computations for each

step. In this way, our amortized algorithm becomes O(log n)
per step.

2) Worst case: repeated traversal: The worst case occurs

when two maps to join have full overlap, such as when

traversing a loop for the second time. In this case the cost

of recovery state in the join with EIF is O (
n2

)
[3]. The

amortized cost per step will be O (n). In this same situation,

the cost will be O (
n2

)
per step for Map Joining SLAM,

SLSJF SLAM and the D&C SLAM amortized. Thus, CF

SLAM is more efficient in all cases. In the experimental sec-

tion we will show simulations and experiments that illustrate

the computational cost of CF SLAM .vs the other algorithms

in different situations.
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III. THE DATA ASSOCIATION PROBLEM

The problem of data association is often ignored when eval-

uating the efficiency and effectiveness of a SLAM algorithm.

Here we show that the CF SLAM algorithm remains in the

worst of case as computationally effective as D&C SLAM,

the fastest to our knowledge that maintains the full covariance

matrix and thus allows data association based on stochastic

geometry. In the order of thousands of features, CF SLAM

will outperform D&C SLAM because of reduced memory

requirements.

Data association can be usually solved in two ways. If a

covariance matrix is available, we can carry out statistical

tests to find possible matches based on stochastic geometry.

If additional information is available, such as texture or

appearance in vision sensors, we can obtain matchings based

not on location but on appearance.

In the following we describe two data association algo-

rithms, one belonging to each category, that can be used in

CF SLAM.

A. Data association using geometrical information

In some situations, only geometrical information, the un-

certain location of features relative to the sensor location, is

available for data association. Such is the case of 2D points

or straight walls obtained with a laser sensor.

In CF SLAM, data association inside a local map is carried

out using JCBB [12] because the corresponding covariance

matrix is available. The data association that remains to be

solved is the identification of features that appear in two

consecutive maps, lets call them M1 and M2, either local

maps at the lower level, or maps resulting from previous joins

in the D&C map joining process. When the two maps to

be joined are local maps, their corresponding covariances are

available and data association can be done with the JCBB also.

If not, we first determine the overlap between the two maps,

features that can potentially have pairings, and then we recover

the covariance matrix for those features only. We proceed as

follows:

1) Identify the overlap, a set of potential matches: This is

denominated individual compatibility, IC. Individually com-

patible features are obtained by tessellating the environment

space, as was proposed in [14], but in our case we represent

the grid in polar coordinates, see fig. 1. For each feature in

the second local map M2, we assign an angular window of

constant width in angle and height proportional to its distance

from the origin, so that more distant features will have a

larger region of uncertainty. The features in the first local map

M1 are referenced on M2 through the last vehicle pose in

M1, μx1, which is the origin of map M2. The uncertainty of

μx1 is recovered using the equation 1 and propagated on the

these features, transformed to polar coordinates and embedded

to angular windows. Features that intersect are considered

individually compatible, giving IC.

2) Partial recovery of covariances: for intermediate maps

that are not at the lower local level CF SLAM does not

compute covariances. As shown in [8], we can recover some

columns of the covariance matrix by solving the sparse linear

equation 1. The columns that we require are given by IC. We

M1

M2M2

Fig. 1. Computing the individual compatibility matrix for two local maps
using polar coordinates. The angular windows for the features in the M2 have
constant width in angle and height proportional to the distance to the origin.
Blue ellipses represent the uncertainties of the predicted features of the first
local map with respect to the base reference of the second. The ellipses are
approximated by bounding windows.

form a column selection matrix EIC to obtain the columns

that are given by IC. If column i of the covariance matrix is

required, we include this column vector in EIC :

ei = [

i︷ ︸︸ ︷
0, · · · , 0, 1, 0, · · · , 0]T

The sparse linear system to be solved is as follows:

ΩΣIC = EIC (1)

This partial recovery of the covariance matrix allows to

use robust joint compatibility tests for data association. The

efficiency of solving equation 1 is the same as for the recovery

of the state vector: in the best case, in exploration trajectories,

the order is O(n), amortized O(log n). In the worst case,

for example when traversing a loop for the second time, the

overlap will be the full map, and the cost will be O(n3),
amortized O(n2).

3) Prediction and Observation: at this point the features

of M1 that have potential matches according to IC, and their

covariances, are transformed to be referenced on M2.

4) Randomized Joint Compatibility: we use the RJC al-

gorithm of [14], a combination of JCBB and RANSAC that

allows to carry out robust data association very efficiently.

In the experimental section we will show that using this

algorithm, CF SLAM is computationally as efficient as D&C

SLAM but requires less memory because the full covariance

matrix is not computed.

B. Data association using appearance information

In some cases, features in local maps can have associated

appearance information, such as texture coming from vision.

In these cases, appearance can be coded using a descriptor

vector, for example SIFT [11] or SURF [6]. In these cases,

we proceed as follows in CF SLAM:

1) Obtain a set of potential matches: we find the best

possible matches between the descriptors in M1 and M2 by

searching for the nearest neighbor in the descriptor space. In

this way we obtain the individual compatibility matrix, IC.
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Algorithm 2 Data association for the Combined Filter using

geometrical information only

Require: Two maps: {M1,M2}
Ensure: Hypothesis H

Find the set of potential matches IC ← (μ1, μ2)
if covariance matrices are available then

extract covariances
(Σ1i,Σ2j)← select(Σ1,Σ2, IC)

else
recover partial covariances
(Σ1i,Σ2j)← recoveryP (Ω1,Ω2, IC) eq: 1

end if
predictions = (h, HΣH)← predict map(μ1i,Σ1i)
observations = (z, R)← (μ2j ,Σ2j)
H ← RJC(predictions, observations, IC)

M1

M2

i = 1

2

3

4

j = 1
2

34

match ∈ IC
match ∈ Hij

match ∈ H

Fig. 2. Computing the data association hypothesis from two local maps.
The rectangles and circles show the minimum local maps of M1 and M2

respectively. All lines are potential matches, and form IC. The lines that are
not dotted belong to a hypothesis between a pair of the minimum local maps,
Hij . The solid lines represent the final hypothesis H.

2) Obtain a pairwise hypothesis using RANSAC: for each

pair of minimum local maps, map i belonging to M1 and

map j belonging to M2, that have a minimum number of

matches (5 in our case) in IC, we use RANSAC [4] to find

the subset Hij of matches that corresponds to the best rigid-

body transform between the two local maps. In fig. 2, the

transformations between the pairs (i = 1, j = 3), (i = 2, j =
3) and (i = 3, j = 2) are not evaluated because they do not

have sufficient matches.

3) Obtain the final hypothesis: in most cases, the final

hypothesis H is simply the result of joining all Hij . When

there is ambiguity (one local map matched with two or more

other local maps), we prefer the hypothesis for pairs of maps

that have a smallest relative distance, because they have least

relative errors. In fig 2 there is ambiguity between H41 and

H42. In this case we accept the hypothesis H41.

Algorithm 3 Data association using appearance information

Require: Two maps: {M1,M2}
Ensure: Hypothesis H

Find set of potential matches IC ← (descr1, descr2)
for each pair minimum local maps i, j in IC do
Hij ← RANSAC(μ1i, μ2j)

end for
H ← select(Hij)

IV. SIMULATIONS AND EXPERIMENTS

To compare the performance of the Combined Filter with

other popular EKF and EIF based algorithms, we use simula-

tions, publicly available datasets, and our own stereo visual

SLAM experiment1. All algorithms were implemented in

Matlab and executed on 2.4 GHz Intel Core 2 CPU 6600 and

3GB of RAM.

A. Simulated experiment

We simulated a robot moving in a 4-leaf clover trajectory.

The robot is equipped with a range and bearing sensor. The

features are uniformly distributed with a separation between

them of 6m. Data association was determined based only on

geometric information using algorithm 2. Fig. 3(top) shows the

computation cost per step of Map Joining SLAM and SLSJF

vs. the amortized cost for the D&C SLAM and CF SLAM:

middle left, cost of map updates, middle right: cost of data

association, right: total cost including local map building. We

can see the sublinear cost of CF SLAM in the map updates

as expected. Fig. 3(bottom) shows the cumulative costs of

map updates (middle left), data association (middle rigtht) and

total cost (right). The algorithms based on EKFs did not solve

the problem completely because they exceeded the available

memory before the end of the experiment.

B. The Victoria Park dataset

The figure 4 shows the resulting map obtained by CF

SLAM on the Victoria Park dataset. All algorithms solve

this dataset correctly. This dataset has 228 features and 3615

odometry steps. The trajectory of the vehicle explores and

revisits frequently, so the uncertainty does not grow much and

errors are kept small. The data association was determined

with the algorithm 2. This dataset is interesting to compare

CF SLAM and SLSJF. Both algorithms require the recovery

of the covariance submatrix for the overlap between the maps

to be joined. There are some areas where the overlap is

almost complete, thus requiring the recovery of almost the full

covariance matrix. The cumulative computational costs are in

figure 4. We can see that CF SLAM is the most efficient for

map updates, but Map Joining SLAM is most efficient for

data association. In total, both algorithms that use the D&C

strategy tend to be most efficient.

C. The DLR dataset

In the DLR dataset, the robot is equipped with a camera,

and carries out a trajectory almost all indoors. Features are

white cardboard circles placed on the ground. This dataset

has 560 features and 3297 odometry steps. The path consists

of a large loop with several smaller loops in the way. Posi-

tion errors grow enough so that sequential algorithms (map

joining SLAM and SLSJF) become weak and fail in the data

association to close the loop (see fig. 5, bottom right). The

D&C algorithms, D&C SLAM and CF SLAM have better

consistency properties, and both solve the data association for

the loop closing in this dataset (see fig. 5, left). The cumulative

computational costs are show in fig. 5, right. In this mostly

1Videos are available at http://webdiis.unizar.es/˜ccadena/
research.html
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Fig. 3. Simulated experiment of a 4-leaf clover trajectory. On the left, the final map. The computational costs are shown on the right; top: map update time
per step (left), data association time per step (middle), total time per step (right). Bottom: cumulative times for all algorithms.

Fig. 4. Results using the Victoria Park dataset. Top: cumulative cost for map
updates (left) and data association (right). Bottom left, cumulative total cost
including local map building, map joining and data association. Bottom right,
the final map with CF SLAM.

exploratory dataset, both D&C SLAM algorithms are clearly

superior than both sequential algorithms. During loop closing,

the cost of data association for both D&C algorithms is higher

than that of both sequential algorithms, for the good reason

that data association is computed correctly and the loop can

be closed.

D. The visual stereo SLAM experiment

Finally, the CF SLAM was tested in a 3D environment

with a high density of features. The sensor is a camera

Triclops carried in hand. The path consists of a loop inside

the Rose Building at the University of Sydney. We obtain

the 3D position of points from the computation of the dense

stereo point cloud that corresponds to each SIFT feature.

The experiment consists of 132 shoots, with a total of 6064

features. The figure 6(left) shows the map obtained with the

CF SLAM. The SLSJF obtains an incorrect map, fig. 6,

bottom right. SLSJF is a sequential map joining algorithm,

thus it is expected to provide less consistent results than D&C

algorithms. In this experiments, this results in incorrect loop

closure.

Both Map Joining SLAM and the D&C SLAM exceeded

available memory in Matlab. The data association is obtained

with the algorithm fig. 3. Cumulative computational costs are

show in fig. 6: for map updates (top center), for data associa-

tion (top right), and total cumulative cost (bottom center). CF

SLAM clearly outperforms all the other algorithms.

V. DISCUSSION

In this paper we have described the Combined Filter, an

algorithm that can carry out SLAM in as low asO(log n) per

step . It brings together the advantages of different methods

that have been proposed to optimize EKF and EIF SLAM.

There is no loss of information, because the solution is

computed without approximations, except for linearizations.

It is conceptually simple and easy to implement. There are no

restrictions on the topology of the environment and trajectory,

although, as it is the case in all other SLAM algorithms, the

computational efficiency will depend on this.

The problem of data association has also been addressed in

this paper. We have shown that we can provide data association

based on stochastic geometry that makes the CF SLAM algo-

rithm as efficient as the most efficient algorithm that computes

covariance matrices, with far less memory requirements. If

appearance information is available for data association, then

CF can clearly outperform all other algorithms based on EKFs

and EIFs.

From our experiments it is clear that the greatest compu-

tational weight can lie in data association. Our future work

includes the development of more robust and more efficient

data association techniques to use in CF SLAM. Among the

most promising appearance-based techniques, we will consider

the ’bag-of-words’ methods and Conditional Random Fields.
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