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Abstract—This paper describes a system for performing multi-
session visual mapping in large-scale environments. Multi-session
mapping considers the problem of combining the results of
multiple Simultaneous Localisation and Mapping (SLAM) mis-
sions performed repeatedly over time in the same environment.
The goal is to robustly combine multiple maps in a common
metrical coordinate system, with consistent estimates of uncer-
tainty. Our work employs incremental Smoothing and Mapping
(iSAM) as the underlying SLAM state estimator and uses an
improved appearance-based method for detecting loop closures
within single mapping sessions and across multiple sessions. To
stitch together pose graph maps from multiple visual mapping
sessions, we employ spatial separator variables, called anchor
nodes, to link together multiple relative pose graphs. We provide
experimental results for multi-session visual mapping in the MIT
Stata Center, demonstrating key capabilities that will serve as
a foundation for future work in large-scale persistent visual
mapping.

Index Terms—multi-session visual SLAM, lifelong learning,
persistent autonomy

I. INTRODUCTION

Despite substantial recent progress in visual SLAM [17],

many issues remain to be solved before a robust, general visual

mapping and navigation solution can be widely deployed. A

key issue in our view is that of persistence – the capability

for a robot to operate robustly for long periods of time. As

a robot makes repeated transits through previously visited

areas, it cannot simply treat each mission as a completely new

experiment, not making use of previously built maps. However,

nor can the robot treat its complete lifetime experience as

“one big mission”, with all data considered as a single pose

graph and processed in a single batch optimisation. We seek

to develop a framework that achieves a balance between these

two extremes, enabling the robot to leverage off the results of

previous missions, while still adding in new areas as they are

uncovered and improving its map over time.

The overall problem of persistent visual SLAM involves

several difficult challenges not encountered in the basic SLAM

problem. One issue is dealing with dynamic environments,

requiring the robot to correct for long-term changes, such as

furniture and other objects being moved, in its internal repre-

sentation; this issue is not addressed in this paper. Another

critical issue, which is addressed in this paper, is how to

pose the state estimation problem for combining the results

of multiple mapping missions efficiently and robustly.

Cummins defines the multi-session mapping problem as

“the task of aligning two partial maps of the environment col-

lected by the robot during different periods of operation [3].”

Fig. 1: Internal architecture of windowed and multi-session

visual SLAM (vSLAM) processes.

We consider multi-session mapping in the broader context

of life-long, persistent autonomous navigation, in which we

would anticipate tens or hundreds of repeated missions in

the same environment over time. As noted by Cummins, the

“kidnapped robot problem” is closely related to multi-session

mapping. In the kidnapped robot problem, the goal is to

estimate the robot’s position with respect to a prior map given

no a priori information about the robot’s position.

Also closely related to the multi-session mapping problem

is the multi-robot mapping problem. In fact, multi-session

mapping can be considered as a more restricted case of multi-

robot mapping in which there are no direct encounters between

robots (only indirect encounters, via observations made of the

same environmental structure). Kim et al. presented an exten-

sion to iSAM to facilitate online multi-robot mapping based on

multiple pose graphs [11]. This work utilised “anchor nodes”,

equivalent to the “base nodes” introduced by Ni and Dellaert

for decomposition of large pose graph SLAM problems into

submaps of efficient batch optimisation [18], in an approach

called Tectonic Smoothing and Mapping (T-SAM). Our work

extends the approach of Kim et al. [11] to perform multi-

session visual mapping by incorporating a stereo odometry

frontend in conjunction with a place-recognition system for

identifying inter- and intra-session loop closures.



II. RELATED WORK

Several vision researchers have demonstrated the operation

of visual mapping systems that achieve persistent operation in

a limited environment. Examples of recent real-time visual

SLAM systems that can operate persistently in a small-

scale environment include Klein and Murray [12], Eade and

Drummond [5], and Davison et al. [4, 8]. Klein and Murray’s

system is highly representative of this work, and is targeted

at the task of facilitating augmented reality applications in

small-scale workspaces (such as a desktop). In this approach,

the processes of tracking and mapping are performed in two

parallel threads. Mapping is performed using bundle adjust-

ment. Robust performance was achieved in an environment

as large as a single office. While impressive, these systems

are not designed for multi-session missions or for mapping of

large-scale spaces (e.g., the interior of a building).

There have also been a number of approaches reported for

large-scale visual mapping. Although a comprehensive survey

is beyond the scope of this paper we do draw attention to the

more relevant stereo based approaches. Perhaps the earliest of

these was the work of Nistér et al. [19] on stereo odometry. In

the robotics literature, large-scale multi-session mapping has

been the focus of recent work of Konolige et al. in developing

view-based mapping systems [14, 13]. Our research is closely

related to this work, but has several differences. A crucial

new aspect of our work in relation to [14] is the method

we use for joining the pose graphs from different mapping

sessions. Konolige and Bowman join pose graphs using “weak

links”, which are used to connect disjoint sequences. The

weak links are added with a very high covariance and subse-

quently deleted after place recognition is used to join the pose

graphs [14]. In our approach, which extends [11] to full 6-

DOF, we use anchor nodes as an alternative to weak links; the

use of anchor nodes provides a more efficient and consistent

way to stitch together the multiple pose graphs resulting from

multiple mapping sessions. In addition, our system has been

applied to hybrid indoor/outdoor scenes, with hand-carried

(full 6-DOF) camera motion.

III. SYSTEM OVERVIEW

In this section we describe the architecture and components

of a complete multi-session stereo visual SLAM system. This

includes a stereo visual SLAM frontend, a place recognition

system for detecting single and multi-session loop closures,

and a multi-session state-estimation system. A schematic of

the system architecture is shown in Figure 1. The system uses

a sub-mapping approach in conjunction with a global multi-

session pose graph representation. Optimisation is performed

by applying incremental and batch SAM to the pose graph and

the constituent submaps, respectively. Each submap is built up

over consecutive sets of frames, where both the motion of the

sensor and a feature based map of the scene is estimated. Once

the current submap reaches a user defined maximum number

of poses, 15 in our system, the global pose graph is augmented

with the resultant poses.

In parallel to the above, as each frame is processed, the

visual SLAM frontend communicates with a global place

recognition system for intra- and inter-session loop closure

detection. When a loop closure is detected, pose estimation is

performed on the matched frames, with the resultant pose and

frame-id’s passed to the multi-session pose graph optimisation

module.

IV. STEREO ODOMETRY

Within each submap the inter-frame motion and associated

scene structure is estimated via a stereo odometry frontend.

The most immediate benefit of the use of stereo vision is that

it avoids issues associated with monocular systems including

inability to estimate scale and indirect depth estimation. The

stereo odometry approach we use is similar to that presented

by [19].

Our stereo odometry pipeline tracks features using a stan-

dard robust approach followed by a pose refinement step.

For each pair of stereo frames we first track a set Harris

corners in the left frame using the KLT tracking algorithm.

The resulting tracked feature positions are then used to com-

pute the corresponding feature locations in the right frame.

Approximate 6-DOF pose estimation is performed through the

use of a RANSAC based 3-point algorithm [6]. The input to

the motion estimation algorithm consists of the set of tracked

features positions and disparities within the current frame and

the current estimates of the 3D locations of the corresponding

landmarks. In our work we have found that ensuring that

approximately 50 features are tracked between frames results

in a reliable pose estimate through the 3-point RANSAC

procedure. Finally, accurate pose estimation is achieved by

identifying the inliers from the estimated pose and using them

in a Levenberg-Marquardt optimisation that minimises the

reprojection error in both the left and right frames.

In our implementation of the above stereo odometry pipeline

we use a GPU based KLT tracker [25]. This minimises the load

on the CPU (by delegating the feature detection and tracker to

the GPU) and exploits the GPU’s inherent parallel architecture

to permit processing at high frame rates. In parallel to this we

compute a disparity map for the frame, which is then combined

with the results of the feature tracker, resulting in a set of

stereo features.

In order to maintain an adequate number of features we

detect new features in every fifth frame, or when the number

of feature tracks in the current frame drops below a certain

threshold. A consequence of keeping the number of features in

a given frame high, whilst at the same time setting a minimum

inter-feature distance in the KLT tracker, is that it helps to

ensure a good distribution of the resulting feature set over the

image.

V. SINGLE SESSION VISUAL SLAM

Deriving a pose graph representation from the stereo odom-

etry system involves two levels of processing. The first of

these optimises over the poses, features and structure within

a local window. As each new frame is added, a full batch

optimisation is performed. The second step transfers optimised

poses to the pose graph after a fixed maximum number of

frames is reached. The resulting pose graph structure contains



no point features and can be optimised efficiently even for a

large number of poses.

We apply smoothing in combination with a homogeneous

point parameterisation to the local window to improve the

pose estimates obtained from visual odometry. In contrast

to visual odometry, smoothing takes longer range constraints

into account, which arise from a single point being visible

in multiple frames. The homogeneous point parameterisation

p=(x,y,z,w) allows dealing with points at infinity [24]. Points
close to or at infinity cannot be represented correctly by the

conventional Euclidean formulation. Even for points that are

not at infinity, convergence of the smoothing optimisation is

typically improved.

We use exponential maps based on Lie group theory to

deal with overparameterised representations. In particular we

use Quaternions to represent orientations in 3D space. Quater-

nions consist of four parameters to represent three degrees of

freedom, therefore causing problems for conventional least-

squares algorithms. Using an exponential map, as described for

example in [7], reduces the local updates during optimisation

to three parameters. The homogeneous point parameterisation

suffers from the same problem, and indeed the same solution

can be applied as for Quaternions after realising that both are

equivalent to the 3-sphere S3 in R
4 if normalised.

With overparameterisations removed, the optimisation prob-

lem can now be solved with standard least-squares solvers.

We use the iSAM library [9] to perform batch smoothing with

Powell’s Dog Leg algorithm. iSAM represents the optimisation

as a factor graph, a bipartite graph containing variable nodes,

factor nodes and links between those. Factor nodes, or short

factors, represent individual probability densities

fi(Θi) = fi(x ji , pki) ∝ exp

(

−
1

2

∥

∥Π(x ji , pki)− zi
∥

∥

2

Σi

)

(1)

where Π(x, p) is the stereo projection of a 3D point p into

a camera of given 3D pose x, yielding the predicted stereo

projections (uL,v) and (uR,v), zi = (ûL, ûR, v̂) is the actual

stereo measurement, and Σi represents the Gaussian image

measurement noise. iSAM then finds the least-squares estimate

Θ∗ of all variables Θ (camera poses and scene structure

combined) as

Θ∗ = argmax
Θ

∏
i

fi(Θi) (2)

When the smoothing window reaches a maximum size, all

poses and associated odometry are transferred to the current

session’s pose graph, and a new local window is initialised.

By including all poses from a window, as opposed to just the

first or first and last pose (as is the case in other approaches)

we ensure that loop closures between arbitrary frames can

be dealt with within the pose graph. Full details of the loop

closure handling is provided in Section VII. To initialise a

new window we use the last pose of the previous window in

conjunction with all landmarks that correspond to features that

are tracked into the current frame.

The pose graph is again being optimised using the iSAM

library [9], but this time using the actual incremental iSAM

algorithm [10] to efficiently deal with large pose graphs. In

contrast to the stereo projection factors fi in the smoothing

formulation above, we now use factors gi

gi(Θi) = gi(x ji ,x j′i ) ∝ exp

(

−
1

2

∥

∥

∥
(x j′i ⊖ x ji)− ci

∥

∥

∥

2

Ξi

)

(3)

that represent constraints ci with covariances Ξi between pairs

of poses as obtained by local smoothing or by loop closure

detection. We use the notation xd = xa⊖xb from Lu and Milios

[16] for representing pose xa in the local frame of pose xb
(xa = xb⊕ xd).

VI. PLACE RECOGNITION

Place recognition is an important component in the context

of large-scale, multi-robot and multi-session SLAM, where

algorithms based on visual appearance are becoming more

popular when detecting locations already visited, also known

as loop closures. In this work we have implemented a place

recognition module based on the recent work of [1, 2], which

demonstrated robust and reliable performance.

The place recognition module has the following two com-

ponents:

• The first component is based on the bag-of-words method

(BoW) [23] which is implemented in a hierarchical way

[20]. This implementation enables quick comparisons of

an image at time t with a database of images in order

to find those that are similar according to the score s.

Then, there are three possibilities, if s≥ α+λt the match

is considered highly reliable and accepted, if α−λt < s<

α+λt the match is checked by conditional random field

(CRF)-Matching in the next step, otherwise the match

is ignored. In our implementation, λt is the BoW score

computed between the current image and the previous

one in the database. The minimum confidence expected

for a loop closure candidate is α− = 0.15 and for a loop

closure to be accepted is α+ = 0.8. The images from one

session are added to the database at one frame per second

and with the sensor in motion, i.e. during the last second,

the sensor’s motion according to the visual odometery

module might be greater than 0.2m or 0.2rad.

• The second component consists of checking the previ-

ous candidates with CRF-Matching in 3D space. CRF-

Matching is an algorithm based on Conditional Random

Fields (CRF). Lafferty et al. [15] proposed CRF for

matching 2D laser scans [21] and for matching image

features [22]. CRF-Matching is a probabilistic model that

is able to jointly reason about the association of features.

In [1] CRF-Matching was extended to reason in 3D space

about the association of data provided by a stereo camera

system. We compute the negative log-likelihood Λt,t′ from

the maximum a posteriori (MAP) association between the

current scene in time t against the candidate scene in time

t ′. We accept the match only if Λt,t′ ≤ Λt,t−1.

This module exploits the efficiency of BoW to detect

revisited places in real-time. CRF-Matching is a more com-

putationally demanding data association algorithm because it

uses much more information than BoW. For this reason, only

the positive results of BoW are considered for CRF-Matching.



VII. MULTI-SESSION VISUAL SLAM

For multi-session mapping we use one pose graph for each

robot/camera trajectory, with multiple pose graphs connected

to one another with the help of “anchor nodes” as introduced

in Kim et al. [11] and Ni and Dellaert [18].

In this work we distinguish between intra-session and inter-

session loop closures. Processing of loop closures is performed

firstly with each candidate frame being input to the above

place recognition system. These candidate frames are matched

against previously input frames from all sessions. On success-

ful recognition of a loop closure the place recognition system

returns the matched frame’s session and frame identifier in

conjunction with a set of stereo feature correspondences

between the two frames. These feature sets consist of lists

of SURF feature locations and stereo disparities. Note that

since these features are already computed and stored during

the place recognition processing, their use here does not place

any additional computational load on the system.

These feature sets serve as input to the same camera

orientation estimation system described in Section IV. Here the

disparities for one of the feature sets are used to perform 3D

reconstruction of their preimage points. These 3D points are

passed with their corresponding 2D features from the second

image into a 3-point algorithm based RANSAC procedure.

Finally the estimated orientation is iteratively refined through

a non-linear optimisation procedure that minimises the repro-

jection error in conjunction with the disparity.

Inter-session loop closures introduce encounters between

pose graphs corresponding to different visual SLAM sessions.

An encounter between two sessions s and s′ is a measurement

that connects two robot poses xsj and xs
′

j′
. This is in contrast to

measurements between poses of a single trajectory, which are

of one of two types: The most frequent type of measurement

connects successive poses, and is derived from visual odom-

etry and the subsequent local smoothing. A second type of

measurement is provided by intra-session loop closures.

The use of anchor nodes [11] allows at any time to combine

multiple pose graphs that have previously been optimised

independently. The anchor node ∆s for the pose graph of

session s specifies the offset of the complete trajectory with

respect to a global coordinate frame. That is, we keep the

individual pose graphs in their own local frame. Poses are

transformed to the global frame by pose composition ∆s⊕ xsi
with the corresponding anchor node.

In this relative formulation, pose graph optimisation remains

the same, only the formulation of encounter measurements

involves the anchor nodes. The factor describing an encounter

between two pose graphs also involves the anchor nodes

associated with each pose graph. The anchor nodes are in-

volved because the encounter is a global measure between

the two trajectories, but the pose variables of each trajectory

are specified in the session’s own local coordinate frame. The

anchor nodes are used to transform the respective poses of each

pose graph into the global frame, where a comparison with

the measurement becomes possible. The factor h describing

Fig. 2: Multi-session visual SLAM processing

an encounter ci is given by

h(xsj,x
s′

j′ ,∆
s
,∆s′) ∝ exp
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∥
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⊕ xsj)⊖ (∆s′
⊕ xs

′

j′))− c

∥

∥

∥

2

Γ

)

(4)

where the index i was dropped for simplicity. The concept of

relative pose graphs generalises well to a larger number of

robot trajectories. The number of anchor nodes depends only

on the number of robot trajectories.

VIII. EXPERIMENTS AND RESULTS

In this section we present results of the performance of

our system for both single- and multi-session processing. The

dataset that we use was collected at the Ray and Maria Stata

Center at MIT over a period of months. This building in known

for its irregular architecture and provides a good testing ground

for visual SLAM techniques in general.

The dataset includes indoor and outdoor (and mixed) se-

quences captured from both a wheeled platform and using

a handheld camera with full 6-DOF movement (e.g. ascend-

ing and descending stairs, etc.). All images sequences were

captured using a Point Grey Bumblebee colour stereo camera

with a baseline of 11.9cm and where both lenses had a

focal length of 3.8mm. The wheeled platform also included

a horizontally mounted 2D SICK laser scanner and a spinning

LiDAR. Although we do not use the LiDAR sensors in our

system, the accompanying laser data allows us to compare

the performance of our technique to that of a laser-based

scan matcher in restricted 3D scenarios (i.e. 2D + rotational

movement).

The complete multi-session visual SLAM system follows

the architecture shown in Fig. 1, and is implemented as a

set of loosely coupled processes that communicate via the

Lightweight Communications and Marshalling (LCM) robot

middleware system. This permits straightforward parallelism

between the components of the system, hence minimising the

impact on all modules due to fluctuations in the load of a

particular module (e.g. due to place recognition deferring to

CRF processing). Futhermore the overall architecture can be

transparently reconfigured for different setups (e.g. from single

CPU to multi-core or distributed processing).



(a) (b)

Fig. 3: Single session visual SLAM processing including full 6-DOF motion.

A. Single-Session Visual SLAM Results

In this section we provide results from a number of single

session SLAM experiments. We have applied the system in

single session mode (i.e. only running a single frontend) across

a variety of sequences for the Stata Center dataset described

above. The system is capable of operating over extended

sequences in both indoor, outdoor and mixed environments

with full 6-DOF motion.

Two example feature-based maps from outdoor sequences

are shown in Fig. 3. Here, for (a), the underlying grid is at

a scale of 10m, where the trajectory is approximately 100m

in length. An example image from the sequence is shown in

the inset with the GPU KLT feature tracks overlaid on the left

frame. Fig. 3 (b) shows a similar scale sequence that includes

full 6-DOF motion, where the user has carried a handheld

camera up a stairs.

In the absence of loop closing we have found the system

to have drift of approximately 1%-3% in position during level

motion (i.e. without changes in pitch angle). To demonstrate

this, Fig. 4 shows two maps with two trajectories, both taken

from the same sequence. The yellow contour shows a 2D

LiDAR based map computed from applying a scanmatching

algorithm to the output of horizontal LiDAR scanner attached

to the cart. The scanmatcher’s estimated pose is shown by the

dark blue trajectory, which can be seen more clearly in the

lower right-hand inset. The distance between grid lines in the

figure is 2m. From the figure the horizontal displacement of

the final poses is approximately 60cm with a total trajectory

of approximately 20m.

An example of the accumulated error in position due to

drift is shown in Fig. 5. Here the dataset consists of an image

sequence taken over an indoor area within in the Stata Center.

Here the grid is at a scale of 5m with the sequence taken

by travelling on a large loop over a space of approximately

35m×15m. The image at the top shows the result of the motion

estimate in the absence of a loop closure. The majority of the

drift here is due to the tight turn at the right-hand end of the

sequence, where the divergence between each traversal of the

hallway can be clearly seen.

The center figure shows the result of the correction applied

to the pose graph due to a sequence of loop closures occuring

at the area highlighted by the red box. Here it can seen

that the pose graph sections showing the traversals of the

hallway are much more coincident and that the misalignment

in corresponding portions of the map is reduced considerably.

The figure also shows accuracy of the map relative to the

ground truth CAD floorplan.

Although the odometry system has shown to be robust

over maps of the order of hundreds of meters, two failure

modes for the system are in low-texture or low contrast

environments, or where the disparity estimation fails over a

large set of features, e.g. due to aliasing. We do not address

this situation in the current system, however the standard

approach of incorporating inertial sensors is a natural solution

to this problem. An alternative approach that we are currently

investigating is the possibility of using multi-session SLAM as

a solution to this problem, whereby odometry failure results in

the creation of a new session with a weak prior on the initial

position. This disjoint session is treated the same as any other

session. When a new encounter does occur, the session can

be reconnected to the global pose graph. A future paper will

present results of this approach.

B. Multi-Session Visual SLAM Results

To test the full multi-session visual SLAM system, we took

two sequences from the same area as shown in Fig. 5 and

processed each through a separate instance of the visual SLAM

frontend. Results of each of the separate sessions are shown in

Fig. 6 (a) and 6 (b), with the combined multi-session results

shown in Fig. 6 (c). Again, loop closure occurred in the same

area as shown in Fig. 5 (b). Finally Fig. 6 (d) shows a textured

version of the same map. The scale of the grid is 2m for

Figures (a) & (b), and 5m for Figures (c) & (d).



Fig. 4: Comparison of drift in single session visual SLAM

against 2D LiDAR scan matcher over a 20m trajectory. Grid

scale is 2m.

IX. CONCLUSIONS

In this paper we have presented a 6-DOF multi-session

visual SLAM system. The principal contribution of the paper

is to integrate all of the components required for a multi-

session visual SLAM system using iSAM with the anchor

node formulation [11]. In particular this is the first example

of an anchor node based SLAM system that (i) uses vision

as the primary sensor, (ii) operates in general 6-DOF mo-

tion, (iii) includes a place recognition module for identifying

encounters in general environments, and (iv) derives 6-DOF

pose constraints from those loop closures within these general

environments (i.e. removing the need for fiducial targets as

was used in [11]).

We have demonstrated this system in both indoor and out-

door environments, and have provided examples of single- and

multi-session pose graph optimisation and map construction.

We have also shown the effects of loop closures within single-

session mapping in reducing drift and correcting map structure.

Multi-session visual mapping provides a solution to the

problem of large-scale persistent localisation and mapping. In

the future we plan to extend the results published here to in-

corporate the entire Stata dataset described in the Section VIII.

Furthermore we intend to evaluate the approach in online

collaborative mapping scenarios over extended timescales.
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