
From Perception to Decision: A Data-driven Approach to End-to-end
Motion Planning for Autonomous Ground Robots

Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart and Cesar Cadena

Abstract— Learning from demonstration for motion planning
is an ongoing research topic. In this paper we present a model
that is able to learn the complex mapping from raw 2D-laser
range findings and a target position to the required steering
commands for the robot. To our best knowledge, this work
presents the first approach that learns a target-oriented end-
to-end navigation model for a robotic platform. The supervised
model training is based on expert demonstrations generated in
simulation with an existing motion planner. We demonstrate
that the learned navigation model is directly transferable to
previously unseen virtual and, more interestingly, real-world
environments. It can safely navigate the robot through obstacle-
cluttered environments to reach the provided targets. We
present an extensive qualitative and quantitative evaluation of
the neural network-based motion planner, and compare it to
a grid-based global approach, both in simulation and in real-
world experiments.

I. INTRODUCTION

One of the major challenges in robotics is to make robots
perform as desired by human operators. Regarding ground
robot navigation, this problem is defined as getting from the
current position to a target position, fulfilling the desired
navigation policy. Although objectives like, e.g. short path or
a safe distance to obstacles are perfectly clear to the human
operator, it typically requires time-consuming hand tuning
such that the robot moves as desired and required. Addition-
ally, classical motion planning solutions require several steps
of data preprocessing that typically are decoupled [1]. A map
of the environment has to be provided, the sensor data has
to be preprocessed and potential objects have to be detected
such that the planner can react accordingly in a later stage.

With the aim of reducing the amount of hand-tuning
parameters of several processes in order to achieve the
desired navigation performance, in this work we present
an approach that goes vice-versa: A data-driven end-to-
end motion planner. The robot is provided with expert
demonstrations of how to navigate in a given virtual training
environment. Like this, a robot operator can show the de-
sired behavior and navigation strategy to the robot. During
navigation, the goal is not only to replicate the provided
expert demonstrations in one specific scenario as in teach-
and-repeat approaches [2], but rather to be able to learn
collision avoidance strategies and transfer them to previously
unseen real-world environments.
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Fig. 1: The robotic platform is able to safely navigate through a maze-like
environment only using local laser and target information (upper left). The
final traversed trajectory is visualized on the map (right). The robot view
image is only shown for visualization purposes but not used as an input to
the end-to-end algorithm.

In comparison to multi-layer map based approaches as
presented in [1], our approach does not require a global
map to navigate. Given the sensor data and a relative
target position, the robot is able to navigate to the desired
target while avoiding collisions with surrounding obstacles.
The approach is constructed under the hypothesis that by
learning a physical understanding of the environment and the
navigation characteristics of an expert operator, our machine
learning-based approach is able to perform in a similar way,
even in previously unseen scenarios. By design, the approach
is not limited to any kind of environment. However in this
work, our analysis is focused on the navigation in static
environments.

Computing the motion commands directly from the laser
data can be an arbitrarily complex task which requires a
model that is able to capture the relevant characteristics
for local motion planning. Among various machine learning
approaches, deep neural network (DNN)-based ones have the
largest potential to model complex dependencies. They have
shown their potential for complex physical scene understand-
ing and feature extraction in various applications like [3], [4],
[5], to name a few. To train an end-to-end motion planner, we
make use of an existing global path planning approach that
provides complete trajectories from start to goal positions.
Since for spatial scene understanding and collision avoidance
the distances to surrounding objects are of special interest,
we use a front facing 270◦ laser range finder as the only
sensor of the robot. The model is trained on simulation data
generated with a global path planner as the expert operator.

The performance of the learned end-to-end motion model
is tested both in simulation and on a real robotic plat-
form. In order to analyze the generalization error of the



model for local motion planning, it is especially important
to conduct experiments in previously unseen environments.
Therefore, we deployed the robot for evaluations in unknown
environments which additionally were significantly more
challenging than the one used for training.

The main contributions of this work are:
• A data-driven end-to-end motion planner from laser

range findings to motion commands.
• Deployment and tests on a real robotic platform in

unknown environments.
• Extensive evaluation and comparison of the presented

local approach with respect to a motion planner with
global map information.

The remainder of this document is structured as follows: In
Section II we present an overview of the related work. Sec-
tion III formulates the problem and presents our approach.
The experiments and their results are shown in Section IV
before we discuss the results in Section V and draw a
conclusion in Section VI.

II. RELATED WORK

Data driven end-to-end motion planning covers various
research areas, both from the perception and the motion
planning side. On the perception side, the scene understand-
ing part is especially important. The input data has to be
processed to extract relevant information.

Since collisions with surrounding objects need to be
avoided and the target has to be reached, in our work
especially the physical or more precisely the spatial scene
understanding has to be given. Fragkiadaki et al. [3] showed
that it is possible to learn a model for ball-ball and ball-
wall dynamics based on demonstrations shown to the model
during training time. Without any prior knowledge about
ball kinematics and collisions, this model is able to predict
the motion of several billiard balls in previously unseen
configurations. It shows that it is possible to model physi-
cal/spatial interactions using DNNs. Chen et al. [6] presented
an approach that extracts spatial information from image
data and uses the extracted features for motion planning of
an autonomous car. The approach is not end-to-end since it
consists of multiple processing layers, yet it already shows
that the extracted information can be used directly by a
motion planner. Ondurska et al. [7] presented an end-to-end
application of neural networks for dynamic object tracking
using laser data. Their work shows that neural networks can
be used to extract important spatial information from two-
dimensional (2D) laser data.

On the motion planning side, previous work already
showed the performance gain by using learning-based mo-
tion models for navigation. Abbeel et al. [8] showed the
application of apprenticeship learning for learning human’s
navigation strategies on a parking lot. The application was
able to significantly reduce the amount of hand-tuning for
motion planning. However, knowledge about the map and
road network is required which makes the approach specific
for a single environment. The approaches by Kuderer et
al. [9], Pfeiffer et al. [10] and Kretzschmar et al. [11]

use the maximum entropy inverse reinforcement learning
techniques to interaction-aware motion models. The learned
interaction models for pedestrians are based on demonstrated
behaviour in occupied environments. These applications also
show that the amount of hand-tuning of the motion- and
interaction models can be reduced by applying machine
learning techniques and that the learned motion models can
outperform hand-engineered ones.

For applications that require a close coordination between
perception and control, like path planning for a robotic arm
for closing a bottle, Levine et al. [12] showed that end-to-
end learning approaches can be beneficial and outperform
multi-layered ones. A policy search problem is transformed
into a deep reinforcement learning problem that uses a
convolutional neural network (CNN) for the complex map-
ping between states and actions. The learned model can
successfully plan motor torques of a robotic arm, given
raw image data. Another image-based deep reinforcement
learning approach for motion planning/decision making was
presented by Mnih et al. [13]. They showed that it is possible
to learn to play various computer games based on screen
pixel data and even to outperform human players.

Regarding mobile robotic applications of end-to-end learn-
ing, Ross et al. [14] presented an approach that learns a
left/right controller for an unmanned aerial vehicle (UAV)
based on image data. The UAV was able to autonomously
navigate through a forest while successfully avoiding colli-
sions with trees in the majority of the cases. However, only
the left/right motion has to be controlled while the forward
motion command is still selected by a human operator. Kim
et al. [15] extended this approach to a hallway application
where they learn translational and rotational velocities. Yet
the approach was only tested in empty hallways without any
objects blocking the UAV’s path. Another image-based end-
to-end collision avoidance approach is presented by Muller et
al. [16]. They focus on the image feature extraction and the
transferability among different environmental conditions. It is
shown that the collision avoidance works, yet the navigation
performance of the robot is not analyzed.

Sergeant et al. [17] presented a laser-based and data-
driven end-to-end motion planning approach based on deep
auto-encoders. The collision avoidance capabilities of this
approach are shown in simulation and on a robotic platform.
Unlike our framework, no robot target position is taken into
account and therefore it is not applicable as a local motion
planning technique if a target has to be reached. With this
approach the robot can drive reasonable paths, however no
specific goal can be reached.

III. APPROACH

This section describes the underlying problem and our
approach to solve it.

A. Problem formulation

Humans have outstanding capabilities in perceiving the
environment, extracting important information and taking
rational decisions based on this information. However, to take



Fig. 2: Structure of the CNN. The laser data is processed by the convolu-
tional part which consists of two residual building blocks as presented in
[18]. The FC part of the network fuses the extracted features and the target
information. The input/output dimensions of the overall model are shown
on the connections. L1 regularization is applied to all model parameters.

decisions, they can rely on a large knowledge base gained
throughout their entire lives.

In order to take the right decisions — in our application
this is to move a robot to the desired target position (includ-
ing heading) — robots have to overcome several challenges.
First, the relevant information has to be extracted from the
sensor data. Second, using this information, a model has to
be found that describes the relationship between the obser-
vations and the actions to take. Third, during deployment,
this model has to be used to take the right decisions as soon
as new observations are available.

Whereas many approaches solve these tasks indepen-
dently, we present an approach that directly computes suit-
able steering commands based on sensor and target data.
Given expert demonstrations, we try to find a function

u = Fθ

(
y,g

)
(1)

that directly maps a vector of sensor data y and goal
information g to desired steering commands u. This function
is parametrized by a parameter vector θ. During supervised
training we find the function parameters θ that best explain
a set of training data. The optimization criterion is based
on |Fθ(y,g) − uexp|, the difference between the predicted
steering commands and the ones provided by the expert
operator. During deployment, the model parameters θ are
given and the steering commands can be computed given
the input data y and g.

B. End-to-end model

The end-to-end relationship between input data and steer-
ing commands can result in an arbitrarily complex model.
Among different machine learning approaches, DNN/CNNs
are well known for their capabilities as a hyper-parametric
function approximation to model complex and highly non-
linear dependencies. In this work, we will use a CNN for
the representation of the function Fθ. The entire processing
pipeline of extracting information and finding the right
steering commands has to be covered by a single model.

As mentioned above, the inputs are given by the mea-
surements of the 2D laser range finder and the relative
target position which means the position of the target (polar
coordinates) in a robot-centric coordinate system. In order

to retrieve spatial scene understanding features, the laser
data is processed by a CNN before the outputs of that sub-
network are fused with the target information and processed
by the FC layers of the model. The structure of the neural
network model is shown in Figure 2. The network consists of
two residual building blocks including shortcut connections
as suggested in [18], where it was shown that the training
complexity can be reduced by using residual networks,
compared to stacked convolutions.

Throughout this paper, two versions of the model will
be investigated. For the first version (CNN smallFC), the
three FC layer dimensions are (256, 256, 256) while for
the second version (CNN bigFC), their dimensions are in-
creased to (1024, 1024, 512). The convolutional part of both
networks remains unchanged, as shown in Figure 2. Our
neural network model implementation is based on Google’s
TensorFlow framework [19].

C. Model training

The ultimate goal for the presented approach is to be
able to learn a driving characteristic demonstrated to a robot
by an expert operator in a supervised manner. To avoid
the burden of human driving data collection at big scale,
we resort to simulation where a global motion planner is
used as an expert. This is a very valuable feature in robotic
applications where data collection is expensive. For each
time step i, the data tuple γi = (yi,gi,uexp,i) consists
of laser measurements, target information and an expert
velocity command uexp,i. Here, the velocity command u =
(v, ω) includes translational and rotational velocity. In order
to reduce temporal correlations in the training data to a
minimum, the tuples are randomized before used for training.
The optimization is conducted using the Adam optimizer
[20] with mini-batch training. The loss function for each
supervised learning step k is given by

Jk
(
ΓB

)
=

1

NB
·
i+NB∑
j=i

|Fθk
(yj ,gj)− uexp,j |, (2)

where the mini-batch ΓB = [γi, . . . , γi+NB
] is comprised of

multiple samples of the training data tuples. Fθk
represents

the model at the current training step. The gradient of this
cost function w.r.t. the model parameters can be computed
using backpropagation.

D. Motion planner deployment

One advantage of neural network models compared to
other approaches is their predictable query time during test-
ing. Whereas the complexity of multi-stage approaches might
increase if the environment becomes more complicated, the
complexity of a DNN is unaffected by the robot’s environ-
ment and the query remains unaltered. Since no external
preprocessing of the laser data is required, the computational
complexity and therefore also the query time for a steering
command only depends on the complexity of the model,
which is constant once it is trained.



The presented neural network model computes the steering
commands frame-by-frame. No internal or external memory
is used to take into account previous in- and outputs.

IV. EXPERIMENTS

This section covers the conducted experiments and their
evaluation. First, the robotic platform is introduced. It is used
throughout all experiments, both as a model in simulation
and for the real-world tests. Second, the training data gener-
ation is explained before four experiments (two in simulation,
two on the real platform) for evaluation are presented. In the
following, the neural network based motion planner will also
be referred to as the deep planner.

A. Robotic platform
We use a Kobuki based TurtleBot as a robotic platform. We

added a front-facing Hokuyo UTM1 laser range finder (see
video2) with a field of view (FOV) of 270◦ and a maximum
scanning range of 30 m to the differential drive robot. The
angular resolution of the laser sensor is 0.25◦ which leads
to 1080 measurements. We use an Intelr NUC with an i7-
5557U processor with 3.10 GHz running Ubuntu 14.04 as an
onboard computer and the Robot Operating System (ROS)
[21] as a middleware.

B. Training data
As in [17], we use the ROS 2D navigation stack for the

expert two-level motion planner (global and local). On the
global level we use a grid-based Dijkstra [1] planner while
a dynamic window approach (DWA) [22] planner is used on
the local level. Stage 2D is used as a dynamic simulator.

During training data generation, the robot drives to ran-
domly selected target positions on the 10 m × 10 m train-
ing map (train). The simulated sensor data, relative target
positions and expert steering commands are recorded. The
selected target positions are guaranteed to be collision free,
e.g. lie outside of possible obstacles. The original train map
is shown in the particular leftmost column of Figure 3 and
Figure 4, respectively. For our real-world tests, we used fused
training data both from the train and the eval2 map. The
latter comprises clutter and other objects the robot might
face during real-world tests. We generated 6000 trajectories
in the train map and 4000 trajectories in the eval2 map with
2.1M and 2.2M input/output tuples, respectively. Training
the model on a Nvidia GeForce GTX 980 Ti GPU3 roughly
takes 8 h with the conducted 2M training steps.

There were four reasons that caused the decision to only
use simulation data (generated with an existing planner) for
training: (i) The data generation is deterministic as the ROS
planner is deterministic, (ii) for basic experiments we can
eliminate noisy sensor data as a potential reason for failure,
(iii) it is faster and easier to generate data and (iv) we can
test the robustness and the generalization capabilities of the
approach if we apply a model trained in simulation on a real
robot.

1https://www.hokuyo-aut.jp/02sensor/07scanner/utm 30ln.html
2https://youtu.be/ZedKmXzwdgI
3http://www.geforce.com/hardware/geforce-gtx-980-ti/buy-gpu
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Fig. 3: Error statistics of the frame-by-frame error between the ROS (expert)
and the deep planner. The evaluation data was not used for training before.
The three small figures visualize the maps on which the evaluation was
conducted. Maps are better viewed by zooming in on a computer screen.

C. Frame-by-frame evaluation
The experiment focuses on the evaluation error of the

CNN model regarding the computed steering commands.
As mentioned in Section IV-B, the model was trained with
the samples from the train map only. This experiment is
conducted using the CNN smallFC model. In order to be
independent of a GPU during testing, the query has to be
done using a CPU only. On an Intelr i7-4810MQ with
2.8 GHz the average model query time is 4.3 ms.

For the evaluation, we generated input/output tuples for
the three maps — comprising train, eval1 and eval2 — by
driving to 30 random target positions each, using the expert
motion planner. Given this data (unseen during training),
the error between the translational and rotational steering
commands of the deep and the expert motion planner is
computed for each input/output tuple.

As the error statistics in Figure 3 suggest, the smallest
evaluation error can be observed on the train map. We
identified that the large outliers of the rotational velocity
command typically occur when turning on the spot. For
example turning 180◦ either to the right or left has a large
impact on the rotational velocity error but only a minor
impact on the actual robot behavior. The eval1 map has
a different structure compared to the train map, yet the
obstacles have a similar shape. This causes an increase of the
evaluation error, especially the rotational velocity command.
Moving on to the eval2 map, both the translational and the
rotational part of the evaluation error increase further.

This result confirms our expectations. The model is able to
transfer the scene understanding and navigation knowledge
gained in one environment to another one. However, if the
deviation in the structure of the environment is large — as
e.g. between the train and the eval2 environment — the
proper scene understanding might not be given which leads
to the larger deviation between expert- and deep planner
steering commands.

D. Trajectory comparison in a simulated environment
The previous experiment showed that it is possible to

transfer learned knowledge from one map to another, yet the



results were only analyzed frame-by-frame. In this section
we want to analyze the performance of the navigation model
when it is deployed as a motion planner on our robotic
platform. This experiment shows, whether the navigation
characteristics were learned from the expert or whether there
was overfitting on a specific map. The CNN model and
training data are the same as in the previous experiment.

Both for the train and the eval1 environment, missions
with fixed target positions are created. While the ROS plan-
ner has global knowledge about the map as during training,
the deep planner only receives the relative target (red dots,
Figure 4) and the laser range findings at each timestep as an
input. Since the simulation is deterministic, only one mission
per planner is evaluated. The reproducability of the approach
will be tested in the succeeding real-world experiment.

Since the planning structure used for training is a layered
motion planning approach, it cannot be described in a single
cost function. Therefore, in addition to the visual inspection,
the trajectories are also evaluated based on the following
metrics inspired by [23]:

• dgoal: distance of the final trajecory position to the given
goal point summed over all trajectories

• Etrans: integrated absolute value of translational accel-
eration over all trajectories

• Erot: integrated absolute value of rotational acceleration
over all trajectories

• dist: overall travelled distance for the mission
• time: overall travel time for the mission
Figure 4(top) shows an example of the final executed

trajectories. The relative errors between both planners for
each of the selected metrics are shown in Figure 4(bottom).
Those performance metrics are independent of the cost
function of the map-based ROS planner but should provide
an estimate of the trajectory characteristics of both planners.

The results show that our end-to-end approach is able
to capture the navigation policy of the expert operator.
Especially on the train map, the trajectories driven with both
planners are congruent for a majority of the cases, although
only local information is used for the deep planner. This is
somehow expected, given that the training data was recorded
on this map. The deep planner slightly outperforms the expert
planner in terms of the given metrics. Since neither the
ROS nor the deep planner were trained or tuned for those
metrics, this has nothing to do with overfitting. It just rates
the performance based on the independent metrics.

Transferring the deep planner to the eval1 environment
shows how well the knowledge gained from one map is
transferable to the other. Although at many positions there
are different topologies on the map, e.g. whether an obstacle
should be passed on the left or right side, the deep planner
takes similar actions and routes as the expert planner that has
perfect knowledge of the full map. Regarding the positioning
of the robot at the goal positions and the rotational energy,
the deep planner now is inferior to the expert one with
respect to the given evaluation metrics. The increase in the
rotational energy was already indicated by the rotational
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Fig. 4: Performance comparison between the ROS (expert) and the deep
planner. Testing results of the trained navigation model on the train (left) and
eval1 map (right). Top: comparison on a trajectory level with target locations
marked in red. Bottom: relative error in [%] of the ROS/deep planner for
the evaluation metrics: final distance to goal (dgoal), translational energy
(Etrans), travelled distance (dist), rotational energy (Erot) and the travel
time (time). Green bars indicate a relative error of the deep planner with
respect to the ROS expert, black bars the opposite. Therefore, positive
(green) error means that the ROS planner is better, negative (black) error
means that the deep planner is better.

velocity error increase in Figure 3. Furthermore, this is
indicated by the trajectories of the deep planner on the eval1
map in Figure 4(top-right), where it shows deviations from
the expert trajectories at several positions. In any of the
deviations, the deep planner swerves back to the path of the
expert planner, yet the correction causes the extra amount
of rotational energy. Inspite the small deviations the travel
distance and time are still similar to the expert planner since
as Figure 4(top-right) shows, the deep planner has a slight
tendency to cut edges sharper than the ROS planner.

The figures in the right column of Figure 4 clearly show
that the performance of the deep planner is worse than on
the train map. Yet they also confirm that the CNN model is
able to learn a given navigation characteristic of an expert
operator and transfer it to a previously unseen environment
and not only to replicate expert demonstrations.

E. Real-world navigation

The following experiment is similar to the one presented
in Section IV-D, yet now the driving tests are conducted
using the real robot. In order to be able to localize and to
navigate with the expert planner, a map of the environment
was recorded beforehand. As up to now, the navigation with
the deep planner is only based on local laser and target
information during test time. During the experiment, the
robot has to traverse a maze like area with many obstacles,
a table with chairs blocking one half of a corridor, an area
with a lot of clutter and also long corridors. Snapshots of
the environment are shown together with the results of this
experiment in Figure 5 and in the video attachment.

As mentioned above, for the real-world experiments we
trained the model based on the train and the eval2 envi-
ronment in order to provide it with the basic navigation



TABLE I: Amount of manual joystick control needed for successful navi-
gation (in [%] of the total distance traveled.)

Target 1 2 3 4 5 6 7 8 9 10 11 12 13
CNN smallFC 1 0 1 0 4 0 0 0 2 4 6 0 0
CNN bigFC 0 0 1 1 0 1 0 0 0 0 4 1 0
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Fig. 5: Comparison between the driven trajectories of the ROS (expert) and
the deep planner (CNN bigFC) on a real robot. For the expert planner, one
experiment is shown while for the deep planner 6 experiments are shown.
The three small pictures give an impression of the actual environment.

principles but also with object shapes that could potentially
be observed in reality. We also found that increasing the
size of the FC layers of the network improves the navigation
performance in the real-world while it was not beneficial
during the simulation tests.

The deep planner is able to drive the majority of the
missions fully autonomous. However, in some positions, the
human operator briefly had to “help” the robot when it got
stuck. The joystick interventions are marked in Figure 5.
Table I shows that the amount of joytick interventions was
reduced significantly by increasing the size of the three FC
layers. Since the environment is richer and more complex,
also the extracted features from the CNN layers might be
more diverse. The FC layers of the CNN smallFC model
most likely are to small to deal with the increased amount
of information.

In order to test the repeatability of the deep planner results,
we conducted six drives with the CNN bigFC. All of those
trajectories are shown in Figure 5. As in simulation, the
navigation characteristics of the deep planner are similar to
the one of the expert planner. Here, the deep planner reacts
differently in a few areas, however still consistent between
the missions. For example between targets 4 and 5, the turn
with the deep planner is wider and between 6 and 7 the
deep planner reacts later to the tables than the ROS planner
does. This is due to the fact that only local information
is used while the expert planner has global knowledge of
the environment. Since the laser beams point radially from
the robot, the distance to the legs of the table and chairs
needs to be sufficiently small such that they are understood
as obstacles by the CNN model. Between targets 10 and

11 the required human interference was the highest for both
models. Considering that the robot was only trained in closed
environments with relatively well-arranged obstacles, it was
not able to traverse this cluttered area fully autonomously in
any of the experiments.

Although the joystick interventions were required to reach
some target positions, we have to mention that the majority
of the interventions were required to “unstuck” the robot and
not to avoid an imminent collision. In general, throughout the
whole experiment, no instable motion of the robot could be
observed. Interestingly, situations the robot could not handle
rather caused it to stop and stand still instead of driving
unpredictable and instable paths.

F. Reaction to sudden changes

This last experiment qualitatively shows the performance
of the deep planner when facing suddenly appearing and
disappearing obstacles. The results for this experiment are
shown in Figure 6 and in the attached video. Although the
navigation model only computes a single steering command,
the constant velocity path for this steering command is shown
for visualization purposes.

The robot has to drive from one end of a corridor to the
opposite end. While the path to the target is clear in the
beginning (Figure 6a), the robot is faced with a suddenly
appearing object blocking its path (Figure 6b). The deep
planner clearly reacts to the object by swerving to the right.
After removing the obstacle, the robot corrects its path in
order to approach the target as fast as possible (Figure 6c).

(a) (b) (c)
Fig. 6: Reaction to unforeseen objects. While driving towards the target
position, the path of the robot gets blocked by an obstacle and afterwards it
is freed again. In the top row of this figure, the constant velocity path using
the computed steering commands and the overall setup are visualized. The
middle row visualizes the robot-centric laser range findings and the relative
target position fed to the robot while robot-view images of the last row are
only used for visualization purposes.



V. DISCUSSION

In this work we showed that it is possible to learn a
navigation policy from an expert operator making use of
a CNN architecture for the complex end-to-end mapping
function from raw sensor data to steering commands. We
showed in various experiments that the learned navigation
model is able to transfer gained knowledge from training
environments to unseen and complex environments. One
important finding of this work is that it is possible to train
such a model in simulation and deploy it on a real platform
while still having satisfactory navigation performance. This
in as extremely valuable feature in many robotic applications
where data generation is expensive.

To our best knowledge, this is the first approach that is able
to perform target oriented navigation and collision avoidance
based on an end-to-end approach using neural networks. Our
experiments showed that the model is capable of much more
than solving trivial start to goal scenarios or simple collision
avoidance tasks. It is even able to solve complex navigation
tasks in maze-like environments in the majority of the cases,
only using local information.

Although we compare our approach to a map-based mo-
tion planner, we are fully aware that it cannot completely re-
place a map-based path planner. If the environment becomes
more complex, the deep planner is still limited to be a local
motion planner that relies on a global path planner to provide
targets. At this point it also has to be clarified that our goal is
not to replicate an existing planner with a CNN. Ideally, the
final training data would come from a human operator that
can train or re-train the robot himself. Another option might
be to use training data from an optimal global planner which
however is not real-time feasible. Taking several thousand
trajectories from a single human demonstrator might be
infeasible. Therefore, further research will show how the
training samples can be reduced and how simulated and real-
world training data can play together.

During the real world experiments, we found that one
limitation of the current approach is wide open spaces with
a lot of glass and/or clutter around. This potentially results
from the fact that the model was trained purely from perfect
simulation data. Training or re-training a model using real
sensor data might reduce this effect.

Furthermore, we observed that the deep planner is able
to avoid small dead ends if it approaches them from the
outside. Once the robot enters a convex dead-end region, it
is not capable of freeing itself. In addition to that, the robot’s
heading sometimes fluctuates before avoiding an obstacle.
This issue will be further analyzed and might be solved by
using recurrent neural networks with internal memory.

VI. CONCLUSION

In this work we presented a data-driven end-to-end motion
planning approach for a robotic platform. Given local laser
range findings and a relative target position, our approach
is able to compute the required steering commands for a
differential drive platform.

The end-to-end model is based on a CNN and is able
to learn navigation strategies from an expert operator and
transfer this knowledge between different environments. We
provided an extensive evaluation for simulation and real-
world experiments and showed that it is possible to train
a navigation model using simulation data and deploy it on a
real robotic platform in an unseen environment.

REFERENCES

[1] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[2] P. Furgale and T. D. Barfoot, “Visual teach and repeat for long-range
rover autonomy,” Journal of Field Robotics, vol. 27, no. 5, pp. 534–
560, 2010.

[3] K. Fragkiadaki, et al., “Learning visual predictive models of physics
for playing billiards,” arXiv preprint arXiv:1511.07404, 2015.

[4] A. Punjani and P. Abbeel, “Deep learning helicopter dynamics mod-
els,” in Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA).
IEEE, 2015, pp. 3223–3230.

[5] C. Cadena, et al., “Multi-modal Auto-Encoders as Joint Estimators
for Robotics Scene Understanding,” in Proc. of Robotics: Science and
Systems (RSS), 2016.

[6] C. Chen, et al., “Deepdriving: Learning affordance for direct per-
ception in autonomous driving,” in Proc. of the IEEE Int. Conf. on
Computer Vision (ICCV), 2015, pp. 2722–2730.

[7] P. Ondruska and I. Posner, “Deep tracking: Seeing beyond seeing
using recurrent neural networks,” in Thirtieth AAAI Conf. on Artificial
Intelligence, 2016.

[8] P. Abbeel, et al., “Apprenticeship learning for motion planning with
application to parking lot navigation,” in Proc. of IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), Nice, France, Sept. 2008,
pp. 1083–1090.

[9] M. Kuderer, et al., “Feature-based prediction of trajectories for socially
compliant navigation,” in Proc. of Robotics: Science and Systems
(RSS), 2012, p. 193.

[10] M. Pfeiffer, et al., “Predicting actions to act predictably: Cooperative
partial motion planning with maximum entropy models,” in Proc. of
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). IEEE,
Oct. 2016.

[11] H. Kretzschmar, et al., “Socially compliant mobile robot navigation via
inverse reinforcement learning,” The Int. Journal of Robotics Research,
p. 0278364915619772, 2016.

[12] S. Levine, et al., “End-to-end training of deep visuomotor policies,”
Journal of Machine Learning Research, vol. 17, no. 39, pp. 1–40,
2016.

[13] V. Mnih, et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[14] S. Ross, et al., “Learning monocular reactive uav control in cluttered
natural environments,” in Proc. of IEEE Int. Conf. on Robotics and
Automation (ICRA), 2013. IEEE, 2013, pp. 1765–1772.

[15] D. K. Kim and T. Chen, “Deep neural network for real-time au-
tonomous indoor navigation,” arXiv preprint arXiv:1511.04668, 2015.

[16] U. Muller, et al., “Off-road obstacle avoidance through end-to-end
learning,” in Advances in neural information processing systems, 2005,
pp. 739–746.

[17] J. Sergeant, et al., “Multimodal deep autoencoders for control of
a mobile robot,” in Proc. of Australasian Conf. for Robotics and
Automation (ACRA), 2015.

[18] K. He, et al., “Deep residual learning for image recognition,” arXiv
preprint arXiv:1512.03385, 2015.

[19] M. Abadi, et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

[20] J. Ba and D. Kingma, “Adam: A method for stochastic optimization,”
in Proc. of Int. Conf. on Learning Representations (ICLR), 2015.

[21] M. Quigley, et al., “Ros: an open-source robot operating system,” in
ICRA workshop on open source software. Kobe, Japan, 2009, p. 5.

[22] D. Fox, et al., “The dynamic window approach to collision avoidance,”
IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.

[23] W. Xu, et al., “A real-time motion planner with trajectory optimization
for autonomous vehicles,” in Proc. of IEEE Int. Conf. on Robotics and
Automation (ICRA). IEEE, 2012, pp. 2061–2067.


