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Abstract

The semantic mapping of the environment requires simultaneous
segmentation and categorization of the acquired stream of sensory in-
formation. The existing methods typically consider the semantic map-
ping as the final goal and differ in the number and types of considered
semantic categories. We envision semantic understanding of the envi-
ronment as an on-going process and seek representations which can be
refined and adapted depending on the task and robot’s interaction with
the environment. In this work we propose a novel and efficient method
for semantic parsing, which can be adopted to the task at hand and
enables localization of objects of interest in indoors environments. For
basic mobility tasks we demonstrate how to obtain initial semantic
segmentation of the scene into ground, structure, furniture and props
categories which constitute the first level of hierarchy. Then, we pro-
pose a simple and efficient method for predicting locations of objects
that based on their size afford a manipulation task. In our experiments
we use the publicly available NYU V2 dataset [35] and obtain better
or comparable results than the state of the art at the fraction of com-
putational cost. We show the generalization of our approach on two
more publicly available datasets.

1 Introduction

In recent years numerous advances have been made in semantic mapping of
environments. It has been recognized that the capability of associating se-
mantic concepts with geometric entities in robot’s surroundings can enhance
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robot’s autonomy and robustness, facilitate more complex tasks and enable
better human robot interaction. These observations led to a large num-
ber of approaches, which proposed varying numbers and types of semantic
concepts and means of associating them with different parts of the environ-
ments. Examples of these included names of rooms/locations and various
object and non-object categories. With the exception of few approaches, se-
mantic parsing at the basic level was formulated as a classification problem,
where simple mapping between the sensory data and semantic concepts has
been considered. In the proposed work we argue that semantic concepts are
naturally arranged in a hierarchy and hierarchical categorization is often
more suitable, both in terms of efficiency and adaptability for specific tasks.
While in the context of lifelong learning it is desirable to be able to recognize
large number of object categories, it is not necessary to try to recognize them
at all times. For example for basic mobility tasks it is sufficient to be able
to understand the free space, walls and obstacles, but it is not necessary to
recognize variety of objects in indoors environments. On the other hand in
the context of object search, more detailed categorization and localization
is needed, if one were to facilitate ‘pick up and place’ tasks. In this work we
demonstrate how to obtain initial semantic segmentation of the scene into
ground, structure, furniture and props categories, which are commonly en-
countered in indoors environments. These categories along with the geomet-
ric features will constitute the first level of hierarchy. This initial semantic
segmentation and confidences about presence of objects, will be followed by
computation of additional features and generation of hypotheses for objects
that based on their size afford a manipulation task.

Proposed Approach We formulate the semantic labeling problem in the
CRF framework, where the dependencies between random variables are rep-
resented by a graph, induced by both image superpixels and 3D scene struc-
ture. The distinguishing features of our approach are: a) the use of a tree
graph structure in the CRF setting which effectively approximates the de-
pendencies and enables exact and efficient inference amenable for real-time
implementation; b) the use of simple and efficient appearance and geomet-
ric cues, providing evidence about depth discontinuities. We carry out the
semantic parsing experiments on NYU V2 dataset [35] EL which contains
464 diverse indoor scenes and 1449 annotated frames, achieving superior

L Authors of NYU V2 dataset maintain an excellent website with full description of the
data and labeling provided, at: http://cs.nyu.edu/~silberman/datasets/nyu_depth_
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or comparable performance at the fraction of computational cost. We also
show qualitative and quantitative results on the B3DO and UWobj datasets
[19, 24]. c) We show how our system can be integrated with object detectors,
in two ways: by pruning the set of candidate locations for less expensive fea-
ture computation, and by using the semantic classes’ probabilities outcome
as a part of the feature vector.

In the next section, we provide an overview of the related work. In Section
we describe the details of our approach. Section [5| describes the experiments
on NYU V2 dataset and compares our approach with the state of the art
methods. Finally, in Section [6] we present discussions and conclusions of the
presented work and discuss possible future directions.

2 Related Work

Previous approaches for semantic segmentation varied in the number and
type of semantic concepts, means of associating them with different parts of
the environments and computational models considered. Examples of most
commonly encountered semantic categories included names of rooms or loca-
tions and various object and non-object categories. In the following section
we mostly focus on the review of more recent methods which exploit both
3D geometric and appearance features computed from RGB-D sensors (e.g.
Kinect) or obtained by 3D reconstruction.

In indoors environments several methods have been developed exploiting
the RGB-D data. In [22] authors highlighted the need for efficiency of the
final inference and used up to 17 object classes. They were able to exploit
stronger appearance and contextual cues due to the scale and different na-
ture of the environment. Recently several researchers carried out more com-
prehensive experiments on larger NYU RGB-D dataset introduced in [34].
Authors in [32] focus on local patch based kernel features and achieved
very good average performance while considering 13 structural and furni-
ture classes and grouping all the smaller objects in ‘other’ category. The
proposed features are computed over high quality superpixels obtained with
computationally expensive boundary detector [27]. In addition to inference
of semantic labels in the work of [35] the authors simultaneously considered
the problem of inference of the support relations between different semantic
categories. The approach relied on elaborate pre-processing stage involving
hierarchical segmentation stage, reasoning about occlusion boundaries and
piece-wise planar segmentation. All these stages required a solution to a sep-



arate inference problem, using additional features and stage specific energy
functions. In the final inference problem the feature vectors computed over
superpixels were over 1000 dimensions. A similar strategy is followed by [16]
where the authors used the available depth information to improve the ini-
tial segmentation, followed by classification of obtained segments. In order
to associate disconnected segments belonging to the same object category,
they also propose a long-range amodal completion to improve the segmenta-
tion consistency. The above mentioned approaches relied on improvements
of bottom up segmentation using the depth data as additional cue, following
by classification of obtained regions. In the work of [I0] authors bypass the
complex feature computation and segmentation stage and and use convo-
lutional networks for semantic segmentation. The final hypotheses are then
evaluated on over-segmentation for the indoors scenes labeling task.

In contrast to our work the methods reviewed above consider the se-
mantic segmentation as a final goal and are computationally expensive. The
proposed approach infers the coarsest level of the semantic hierarchy which
can be further refined based on the task.

Another class of approaches for semantic scene understanding focus on
the problem of object detection, with or without the bottom up segmen-
tation stage. The framework based on sliding window object detectors has
been explored in [25] [36] using RGB-D sensors. In their work the objects
are viewed in a table top setting at moderate scale. The authors formulated
the object detection problem as an inference on a voxel grid, reconstructed
from multiple frames of RGB-D data. The final inference is carried in MRF
framework, where the data term accumulates evidence from the sliding win-
dow based detectors trained on different views of the objects. A variant of
the HOG descriptor [24] was used for capturing the appearance and shape
information of each view of an object and trained using SVMs. The larger
extent of the objects in the dataset [24] and sufficient number of training
examples made the use of HOG based detector feasible. Another related
work on unsupervised object discovery [8] has shown promising results for
closer range and small amount of clutter. The work of [28] also considers
the problem of detection of generic simple objects in an unsupervised set-
ting, relying on the computation of the boundary using both RGB and depth
data, followed by a selection of salient points and boundary completion. This
methods is very effective for closer range table top settings, where both depth
discontinuities and support surfaces can be well estimated and the process
of detection of image contours is more reliable. Their methods relies on a
high quality contour detector [27], which is quite expensive to compute.
The generic object hypotheses proposed by this detector were then fed to a



specific contour based classifier using so called torque descriptor [38]. The
approaches, which focus on object detection and categorization are suitable
for the close range operation where the place that contain the objects has
been already determined and the robot is only deciding which object pick
up.

Several approaches have been proposed for “objecteness” detection using
image-only information [2), 5], 6, 12]. These approaches again are focused on
work well on object-centered images and, with the exception of [6], typically
take in the order of seconds or even minutes to process every frame. In
Section we include comparisons with the recent proposed generic object
detector [6], which has shown better performance than similar image-only
Systems.

The above cited works differ significantly in the nature of the datasets
used to evaluate approaches to semantic segmentation and object detection.
The most important distinguishing characteristics is the scale at which ob-
jects appear in images. For the datasets, where the objects appear in a table
top setting, the challenges come from proper feature selection and efficient
categorization in the presence of clutter. The datasets which contain more
open scenes focus mostly on improvements in classification of non-object
categories [10], B5] and large appearing objects in the dataset [16].

In our work we attempt to bridge methods which rely on semantic seg-
mentation of open scenes with larger depth variation and table top object
detection. Instead of striving to achieve high accuracy of object detection
for objects appearing at smaller scales in open scenes, we propose a rep-
resentation and efficient framework which can be used for priming general
object search and semantic understanding of non-object components of the
environment.

Another line of works attempts to bring in the semantic information to the
existing systems and approaches for simultaneous localization and mapping.
Authors in Héne et al. [I7] have proposed a batch algorithm for jointly seg-
menting the scene and optimize the 3D reconstruction. Their system is a
very good option for post-processing but hardly applicable in online robotic
operation. An online SLAM system recognizing objects is proposed by [7],
where in parallel to a monocular EKF SLAM thread there is a thread com-
paring visual features with the visual features of objects in the database. The
recognition thread is always comparing against all the specific instances and
as such is not scalable in the number of different objects and instances. The
approach of [33] solve the SLAM problem aided by the a priori known of
some objects. In real-time this SLAM system is able to recognize these ob-



jects and optimize their pose and the full map given the object models in the
database. Although impressive in the results this approach does not scale
well with the number of different objects in the database and it is not suit-
able neither for exploration of new environments nor discovery new object
instances.

In our approach we also strive to develop framework which is efficient and

amenable for real-time implementation. While efficiency has been considered
extensively in the context of vision-based SLAM methods, the current tech-
niques for semantic segmentation are computationally expensive and work
predominantly in a off-line setting.
The complex issues of representation of semantic knowledge along with the
spatial knowledge and the role of ontologies has been pointed out in the work
of [29]. The authors focused more on exploiting the interplay between room
locations and object identities, without considering more detailed semantic
segmentation.

3 Semantic Segmentation

We formulate the semantic parsing in the framework of Conditional Ran-
dom Fields (CRFs) with a tree graph structure encoding the pairwise re-
lationships. We assume that an image and a 3D point cloud of the scene
are available. Our approach starts by over-segmenting the image using the
efficient simple linear iterative clustering (SLIC) algorithm [I]. Every su-
perpixel in the image is interpreted as a cluster in the 3D point cloud for
further computations. The 3D centroid of each cluster is used to compute a
minimum spanning tree over Euclidean distances, defining the edges for the
graphical model. The data and pairwise terms are determined using simple
yet discriminative appearance and geometric cues for the classes that we are
interested in. The learning and the final inference process is carried out over
the graph in the CRFs framework. In the remainder of this section we detail
the components of our approach and explain the intuition behind them.

3.1 Framework: Conditional Random Fields

Conditional random fields are probabilistic undirected graphical models first
developed by [23] for labelling sequence data. CRFs are a case of Markov
Random Fields, and thus satisfy the Markov properties. Instead of relying
on Bayes’ rule to estimate the distribution over hidden states x from ob-
servations z, CRFs directly model p(x|z), the conditional distribution over



the hidden variables given observations. Due to this structure, CRFs can
handle arbitrary dependencies between the observations. This makes them
substantially more flexible when using attributes that are too complex to
model their probability distribution and the assumption of independence, as
in a naive Bayes setting, is too strong [21].

The nodes in a CRF are denoted x = (x1,X2, -+ ,Xp), and the observa-
tions are denoted z. In our framework the hidden states correspond to the
m possible classes: x; = {ground, structure, furniture, props}.

A CREF factorizes the conditional distribution into a product of poten-
tials. We consider only the potentials for nodes ¢(x;,z) (data-term) and
edges ¥(x;,x;,2) (pairwise-term). This choice is commonly referred as pair-
wise CRFs. The potentials are functions that map variable configurations
to non-negative numbers capturing the agreement among the involved vari-
ables: the larger a potential value, the more likely the configuration. Using
the data and pairwise potentials, the conditional distribution over hidden
states is written as:

pixlz) = o T] o(xinm) T] wixix;.9) 1)
(Z) ieN i,j€E

where Z(z) is the normalizing partition function, and (N, &) are the set
of nodes and edges on the graph. The computation of this function can
be exponential in the size of x. Hence, exact inference is possible for a
limited class of CRF models only, e.g. in tree-structured graphs. Potentials
are described by log-linear combinations of feature functions, f and g, i.e.,
the conditional distribution in Eq. [I] can be rewritten as:

p(x|z) = Zzz) exp | wy Z f(x;,2) + wa Z g(x;,X;,2) (2)

ieN 1,jEE

where [w1, wa] are weights representing the importance of each term. CRFs
learn these weights discriminatively by maximizing the conditional likelihood
of labeled training data. We will describe every term of Eq. [2]in detail in[3.3]
With this formulation we can obtain either the marginal distribution over
the class of each variable x; by solving Eq. [2, or the most likely classification
of all the hidden variables x. The latter can be formulated as the maximum
a posteriori (MAP) problem, seeking the assignment of x for which p(x|z)
is maximal.
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(a) Dense graph on Image.

Figure 1: Graph Structures (blue lines). On the left the most common graph
structure used in the computer vision community. On the right the graph
structure selected by us, a minimum spanning tree over 3D.

3.2 Minimum Spanning Tree over 3D distances

Instead of computing the graph at the pixel level, we over segment the image
into superpixels. The CRF graph structure is typically determined by the
neighbourhood relations between superpixels. This often yields dense graph
structure, see Fig. (a), which is prone to over connect unrelated classes.
We define the graph structure for the CRF as a minimum spanning tree
over the FEuclidean distances between 3D superpixel’s centroids in a scene.
By definition, the minimum spanning tree connects points that are close
in the measurement space, highlighting intrinsic locality in the scene, see
Fig. (b) This graph structure was already used in the context of object
recognition [30] and place recognition [4]. In [4] was used for graph matching
for place recognition, where the nodes correspond to a sparse set of detected
keypoints and the idea was keep the structure of the graph between the
matched nodes in a pair of scenes, while in the current work we handle a
denser and structured 3D point cloud and we exploit that physical entities
are continues by nature.

Given that our graph structure is a tree we can use the belief propagation
(sum-product) algorithm to exactly infer the marginal distribution of each
node, and the max-product algorithm to find the MAP assignment [21].



Default ‘ Observation ‘ Dim. ‘ Comments

Image Features
LAB color 6 Mean and std
Ul 1 Vertical pixel location
H, 1 Entropy of hgs(y)
3D Features
(hs,ds) 2 Height and Depth
0 (INRLIND 2 | ifds < g 2jen(d))
Ads = ||ds — djeNH
0 #‘2103 1 Superpixel Planarity
0 1 —mean(||fistin|[)| 1 | Neighbouring Planarity
0 [l 1 Superpixel Orientation

Table 1: Local observations

3.3 Feature description

With the graph structure defined for our CRF model, we have to define
feature functions f(x,z) and g(x,z) in Eq. [2l The features for the data-term
are computed as:

f(xs,2) = — log Ps(xs|2z) (3)

where the local prior Ps(xs|z) is the output of a k-nearest neighbours (k-NN)
classifier from a set of observations z. We compute Ps(xs|z) as proposed by
[39] in Eq. [4] & is fixed to 10.
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Ps(xs = 1j|2) = (4)

where f(l;) (resp. f(l;)) is the number of neighbours to s with label ;
(resp. not 1;) in the kd-tree. And F(l;) (resp. F(l;)) is the counting of
all the observations in the training data with label [; (resp. not ;). The
observations z computed for every superpixel s capturing the appearance
cues obtained from RGB image (Image Features) and the depth cues (3D
Features) are summarized in Table [1) and described next.

3.3.1 Image Features

e The mean and standard deviation of each channel in the LAB-color
space for the superpixel.



Figure 2: Gradient mixture model [9]. From left: three gradient probability
images of being aligned to each of three vanishing points, a color-coded
membership image with lines to one of three vanishing points (red, green,
blue), not to be consistent with any (cyan). Rightmost, the image with bright
proportional to the entropy of each superpixel.

e The vertical pixel coordinate for the superpixel’s centroid.

e The entropy of the probability distribution for the superpixel bound-
aries belonging to the dominant vanishing points in the scene, see Fig.
rightmost.

The entropy feature expresses geometric consistency of a superpixel bound-
ary with a particular vanishing direction. This feature is motivated by the
observation that in indoors environments superpixel boundaries are often
aligned with the vanishing directions. This observation has been also widely
utilized in single-view reconstruction techniques, e.g. [I8]. We employ 5-
component gradient mixture model for the Manhattan world described in [9].
For each image pixel, the model provides the probability of the pixel lying
on an edge, probability to pointing to each of the three vanishing points,
see Fig. [2 and the probability of being noise. We take into account only
those pixels having the probability of being on an edge higher than being
noise. For each of those points a maximum over last 4 probabilities is cho-
sen as a membership of the point to either being consistent with one of the
3 vanishing points or not to be consistent with any, see fourth column in
Fig. 2] For a particular superpixel s, we compute a normalized histogram
hgs(y) with four bins y = {1,2,3,4} from memberships of all pixels lying
along the superpixel boundary. In order to differentiate between clutter or
small objects and structural classes we use the entropy of this normalized
histogram, Eq.

10
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Hy =~ Z hgs(y = j)log (hgs(y = 7)) (5)

3.3.2 3D Features

For the 3D point cloud computed with the depth information we use cues
from the 3D position and planarity, for the superpixel itself and for the
superpixel with respect to its neighbourhood. The cues are:

The depth (ds) and height (hs) for the superpixel’s centroid.

The mean and standard deviation of the absolute difference between
the depth dy and the neighbourhood’s depths: ||ds; — djcn||. These are
only computed if d, < ﬁ >_jen(dj), with this condition we encode
the in-front-of property.

The superpixel planarity encoded by the curvature of a superpixels’
point cloud [20] using the SVD and sort the singular values such that
g1 > 09 > 03.

The neighbourhood planarity computed as one minus the mean of the
dot product between the normal to the plane against to the neighbour-
hood normals [43].

The superpixel orientation, taken as the projection of the superpixel’s
normal on the horizontal plane [42].

The superpixel neighbourhood N refers to all the superpixels in contact

with superpixel s in the image. In Table |1 we also show the default values
and the dimensionality of these observations. As a result we compute for
each superpixel 15 dimensional feature vector with 8 elements from Image
features and 7 from 3D features.

Pairwise term

The pairwise feature g(x;,x;,z) is computed for every edge in the graph as:

ooy Jl=exp(—|lei —¢ill2) — L=
e ik s S )
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where [|¢; — ¢;||2 is the L2-Norm of the difference between the mean colors
of two superpixels in the LAB-color space and [ is the class label.

Given the graph structure and the features outlined above, we proceed
with the description of the learning and inference stage and the performance
evaluation of the final semantic segmentation approach in Section [5 An
example of the probability distribution outcome from our approach is shown

in Fig. [3

Figure 3: Exact marginals obtained with the sum-product algorithm. From
left: probability to be ground, structure, furniture and props. Darker means
higher probability.

4 Priming Object Detection

In this section we show how the marginals from the semantic segmentation
approach can be used in the task of localizing objects in the scene. We
propose a simple detector for generic objects and show how to combine it
with the semantic segmentation results to improve the detection rate and
computational cost. Instead of training an object detector separately for
each object category we consider single category of generic objects whose
extent can be well approximated by a bounding box. Each bounding box is
then characterized by a boundary feature characterizing the orientation of
the boundary close to the bounding box border. The feature is motivated
by previous works on saliency and detection of generic objects [2] and works
for objects of relatively simple shape, where majority of the true object
boundary is close to the bounding box boundary. In the next section we
describe in more detail the boundary feature, the generic object detector
and the method for proposing and scoring of candidate bounding boxes to
generate object hypotheses.

4.1 Features and Classifier

We compute the gradient orientations in four blocks depicted in Fig. [ right,
obtained by shrinking and enlarging the bounding box by 5 pixels each, to

12
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Figure 4: Examples of objects and their bounding boxes and close-up of the
orientation energy for both intensity and depth channel. Center: orientation
energy for paper towel dispenser, where the depth gradients and image gra-
dients complement each other well. Right: window blocks in the vicinity of
the boundary where the histograms are computed.

capture the variation around the actual boundary. In each block we quantize
the orientations from (0°- 360°) into 9 orientation bins. This is done both for
intensity and depth channel yielding a 2 x 4 x 9 = 72-dimensional feature.

At this point we can introduce the first modification to include the se-
mantic segmentation information into the feature vector. We compute the
probability distribution of the bounding box over the four classes (ground,
structure, furniture, props), by averaging and re-normalizing the pixel’s
probabilities inside the window. Now, the feature vector is augmented with
the four values resulting in a 76-dimensional feature vector.

We train an SVM classifier with histogram intersection kernel [26] over
the mentioned feature vector. The positive examples come from the ground
truth bounding boxes and the negative ones are picked from randomly the
generated windows using the proposal of [40]. In the window generation
method of [40] the image is first over segmented in superpixels, which are
then merged using the criteria of similarity over the color space and super-
pixels’ sizes building a fine to coarse hierarchical over-segmentation. The
bounding boxes of each superpixel at different levels in the hierarchy are
possible candidates.

The ground truth is constrained to those objects with sides smaller that
50cm and greater that 5em. We obtain the metric dimensions of the bound-
ing boxes directly from the depth map. The negative examples are con-
strained by the same rule.

13



4.2 Object Search Strategy

At the test time, instead of generating candidate windows with different
predefined aspect ratios and scales, we use again the strategy of [40] with
the same constraints on the size than before.

Now, we introduce the second modification which is sampling the candi-
date windows with the probability of the bounding box belonging to furni-
ture or props. The idea behind this sampling strategy is that if our semantic
segmentation is confident that one candidate box covers the wall or the floor
we don’t need to evaluate the classifier on it or compute the features for that
window. On the other hand, it is highly probable the objects we are looking
for lie over furniture pieces or belong to the props semantic class.

5 Experiments

In our experiments we use the NYU V2 RGB-D dataset [35], which contains
1449 labeled frames. The labeling spans over 894 different classes produced
using Amazon Mechanical Turk. The authors of the dataset also provide a
train and test splits and a mapping from the 894 categories to 4 classes:
ground, structure, furniture and props, as was used in [35]. We take 795
training frames for building the kd-tree and for CRF parameter learning, and
the remaining 654 frames for testing and quantitative comparison against
state of the art methods in RGB-D semantic SegmentationE]

We obtain superpixel segmentation using SLIC implementation from the
VLFeat library of [41], followed by the computation of the features described
in Table |1, With the computed features in the training set we build a kd-
tree using the implementation of [3] with the default parameters. Then for
every superpixel in the training set we obtain the k-NN classification for the
training data using Eq. 4] with the £ = 10 nearest neighbours.

The minimum weight spanning tree (MST) is computed from 3D cen-
troids of all the superpixels. Now, using the MST graph, the output of the
k-NN classifier in Eq. [J]and the pairwise potentials, Eq. [6] we learn the pa-
rameters in the CRF setting. For the learning, inference and decoding with
CRF's we use the Matlab code for undirected graphical models (UGM)E]

2The input images are cropped, the external blank boundary is removed, and then
re-scaled to the half yielding images of 313x234 in resolution.

3Code made available by Mark Schmidt at http://www.di.ens.fr/~mschmidt/
Software/UGM.html
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Recall |ground furniture props structure

ground 88.5 8.8 1.3 14
furniture 6.6 63.5 125 174
props 8.1 32.9 318 27.2
structure 1.0 14.0 6.3 78.7

Table 2: Confusion matrix for the pixel-wise accuracy in %.

ground | furniture | props | structure | Average | Global
Ours 88.5 63.5 31.8 78.7 65.6 67.3
only Im Feat. 68.5 46.1 30.6 75.3 55.1 57.9
only 3D Feat. 88.9 65.4 18.2 80.3 63.2 66.4
with Ds & no H, 90.3 64.3 25.3 78.0 64.5 66.6
with Dy 89.4 61.9 30.6 78.3 65.1 66.5
Ours & N-Im graph 88.9 64.9 22.4 81.4 64.4 67.3
Ours & Delaunay graph | 89.1 63.6 19.6 81.4 63.5 66.5
k-NN, Eq. |§| 88.5 50.2 43.7 72.7 63.8 62.6
Silberman et al. [35] 68 70 42 59 59.6 58.6
Couprie et al. [10] 87.3 45.3 35.5 86.1 63.5 64.5

Table 3: Pixel-wise percentage recall accuracy.

5.1 Results on Semantic Segmentation

At testing time, to obtain the most likely label assignment for the super-
pixels we solve the MAP problem over the CRFs. This problem does not
require any threshold selection and all the parameters are computed/learned
from the data. The inference results give us the labeling assignments over
superpixels, we transfer those to every pixel in the superpixel to compute the
pixel-wise accuracy of semantic labeling. In Fig. [5| we show several examples
of the output of our approach.

Table 2| shows the confusion matrix normalized by rows (recall on the
diagonal). The props class is the most frequently confused. Props class is
defined in [35] as “small objects that can be easily carried”. We can observe
in the results, Fig. [5| several planar objects (posters, carpets, placemats)
are labeled as structure or furniture. Another source of confusion is due to
the quality of the ground truth, where we found several ambiguities in the
structure and furniture categories, where kitchen tables, stoves, dishwashers
and cabinets were labeled as the two interchangeably.

In first row of Table [3] we show the pixel-wise recall accuracy along
with the average and global accuracy for our approach: CRF-MST and k-
NN+SLIC with Image and 3D features. To study the importance of image
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Ground  Structure  Furniture Props  No Labeled

Figure 5: Original images, ground truth labeling and MAP result from our
approach in the NYU dataset.

features vs 3D features, we remove one set at a time keeping the rest of the
system intact. The rows Image Features and 3D Features show the corre-
sponding performance when using only one type of features. Using only 3D
features we can see better results for three out of four classes at the cost of
very poor accuracy in props and smaller average and global accuracy. Our
full system, with both sets of features obtains the best trade off between for
all performance measures. In Table [3| we also show the result by only using
the data-term, k-NN row, using the image and 3D information. It is clear
that the MST and the CRF framework improve the general performance.

Manhattan world assumption: We implicitly use the Manhattan World
assumption when using our entropy feature Hg, Eq. 5 This feature helps
the system to identify clutter or small objects that are not aligned with
the dominant directions in a scene. Hy is an image-only feature, but is also

16



possible compute dominant plane normals from depth data aligned with
the Manhattan World [35]. Following [37] we find the dominant orthogonal
directions of the world frame then we normalize the absolute values of the
superpixel’s normals projected on this world frame to compute their entropy,
Eq. [7] similarly as in the case of Hs.

3 S

Dg = — stj log (mgj), with mg; = 73“15]1

j=1 > k=1 7sk

We have evaluate our system removing H, from our features and adding
Dy instead, and also using both, i.e. our features and D, (with Dg & no
H;) and (with Dy) in Table 3] respectively. In the first case the accuracy for
ground is improved but for props is hurt. The second case, the performance
for props improves again but in general is not as good as our initial proposal.

(7)

Graph structure: In order to compare the advantage of the MST as
graph structure we have also included the results of our system with other
two graphs, first the classical choice of connecting each superpixel with its
neighbours in the image (N-Im), see Fig. and the second, by connect-
ing the nodes through the Delaunay triangulation over their 3D positions.
Given that both graphs contain loops we have used loopy belief propagation
(LBP) for inference. In Table |3| we can see that their average and global
accuracies are still competitive but at expense of poor accuracy in props.
They also incur computationally most expensive inference and no warranty
of convergence. For N-Im graph LBP took, with a maximum of 100 iter-
ations, in average 0.96s per frame and did not converge on 19 out of 654
frames. If we reduce the maximum iterations to 20 we reduce the cost to
0.83s per frame but in 455 out of 654 frames the inference does not con-
verge. For Delaunay graph LBP took, with a maximum of 100 iterations, in
average 2.8s per frame and did not converge on 15 out of 654 frames. Our
MST graph structure allows exact inference using belief propagation in only
42ms in Matlab.

Comparisons with the state of the art: We also compare against the
full method proposed by [10]. That method uses the four channels (RGB and
depth) in a multi-scale convolutional network to learn the features, and a 2-
layer multi-perceptron as classifier, followed by the aggregation of the final
assignments over superpixels computed by [15]. We can observe that our
approach is competitive or better for all the classes, with better average and
global accuracy. Their system takes 2 days to train but is very efficient in the
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Figure 6: Original images, depth and MAP result from our approach in
B3DO [19] (left) and UWobj [24] datasets (right).

testing stage, spending 0.7 seconds per frame to perform the segmentation
using a parallel implementation for the convolution stage [14].

In comparison to the original work of authors who released this dataset
[35], as shown in Table |3 their system still obtains the best accuracy in the
furniture and props classes. They use a feature vector of 1128 elements to
compute the data term with a logistic regression classifier. The cues come
from color (36), shape (1086) and scene (6) information (supplementary
material in [35]). Our representation and features are notably simpler en-
abling more efficient feature computation and inference while still achieving
comparable performance.

5.1.1 Independent Datasets

We evaluate our semantic segmentation on two independent datasets; Berke-
ley 3-D Object Dataset, B3DO [19], and the RGB-D Object Dataset from
University of Washington, UWobj [24]. B3DO with 849 frames has more
variability in the indoors scenes and spans from offices to house rooms.
The smoothed depth information is obtained by another in-painting tech-
nique, different from that used by NYU V2. UWobj is a dataset focuses on
close range object instance detection and object categorization and contains
mostly table top scenes from the lab with large extent objects. This dataset
is released without in-painting in the depth maps. From both datasets we
evaluate our semantic segmentation approach on the scenes that correspond

18



Total
MAP

Pairwise | 0.00 0.01
B mean
K-NN
B max
MST
F_3D
F_entropy
F_lab
0.00 0.50 1.00

Computational Cost (s)

Figure 7: Detailed mean and maximum computational timing of 654 NYU
V2 frames in testing excluding SLIC over-segmentation cost.

SLIC | F-lab | F-entr. | F-3D | MST | k-NN | Pairw. | MAP | Total
Matlab/mex | 611 95 338 173 4 42 4 42 | 1309
C++4/GPU |10.58 | 3.50 | 28.57 |19.62| 0.34 | 77.97 | 0.39 | 0.99 |141.0

Table 4: Mean computational timing for the semantic segmentation system
in milliseconds in the NYU-V2 test set.

to open space, instead to table top scenes; as our semantic segmentation
focuses on semantic classes relevant during navigation or exploration rather
than for manipulation. We consider an open space any scene where the me-
dian of the depth map is greater than 2.5 meters leaving us with 182 frames
from B3DO and 45 frames from UWobj. Some result are shown in Fig. [0}
we can see a similar performance that for the NYU V2 dataset, even with
the differences in depth pre-processing, type of scenes and poses of the sen-
sor, which show that our proposal is general and powerful tool for semantic
segmentation.

5.1.2 Timing

The experiments were carried out with a research implementation of our
approach in Matlab. The computational cost, for NYU V2 in testing, is
detailed in Fig. [7 excluding the superpixel over-segmentation. The system
runs in average at 1 fps in a single-thread of a 3.4 GHz IntelCore i7-2600
CPU M350 and 7.8 GB of RAM. Including the SLIC over-segmentation is
still able to run at 0.5 fps. For the whole system, the mean and the maxi-
mum computational times are 0.7s and 1.0s, respectively. The average cost
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to obtain the SLIC superpixels is 611ms, although a C++ implementation
would take half of that time as reported by [I] In the feature computation
the main bottleneck is the computation of the gradient mixture model [9] for
vanishing directions. The training stage takes, less than 2 seconds to build
the kd-tree, and 180 seconds for the CRF parameter learning. In total in-
cluding the feature computation, the computational cost for all the training
data is less than 20 minutes.

An initial implementation of semantic segmentation approach in C++
and using the GPU implementation of SLIC (gSLIC) of Ren and Reid [31] is
closer to a real time operation working around 5 fps. Table [l shows the mean
timing for both versions, Matlab/mex and C++/GPU. A more efficient
system is possible by implementing other stages, e.g. KNN on the GPU.

5.2 Object Localization

We train the object detector as described in Section [ on the training set of
the NYU V2 dataset and evaluate it on the test set from the same dataset
and, on B3DO and UWobj datasets. Fig. [8|shows some example results from
testing in all the datasets.

We use the intersection over union measure greater than 0.5 to accept a
detection [I3]. We also use the concept of ground truth bounding boxes to
ignore (BBgr—ig) as proposed in [I1]. Any proposal matched to a BBgr—iq
does not count as good detection but neither as false positive. This solves
issues for example when we detect individual instances of objects and the
BBgr—ig is covering group of objects (book vs books).

5.2.1 Performance Evaluation

In Fig. [9] we show the performance of our approach for priming object detec-
tion in terms of Fl-score vs detector SVM-score, the SVM score is calibrated
to span from 0 to 1. In order to show the contribution of using the seman-
tic segmentation information we present three versions for our system, as

described in Section 1] and

1. Ours [I,D], No sampling: This is the basic system, descriptor with in-
tensity and depth channels without using the results from the semantic
segmentation in any stage.

2. Ours [I,D,P], No sampling: Here we augment the descriptor with the
probabilities from the semantic segmentation.
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Figure 8: Priming object detection. The probability map, p(furniture) +
p(props), for the sampling of candidates is on the left of every pair, darker
means higher probability. On the right the image with ground truth bound-
ing boxes (yellow) and detections. The color of the detection windows goes
from cyan to pink as the SVM score increases. We show four examples for
every dataset, NYU V2 (top), B3DO (middle), and UWobj (bottom).
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Figure 9: Comparison of Fi-score vs detector SVM-score when using the
feature vector composed only by the intensity and depth information (ours
[,D]), when augmented by the semantic segmentation probability (ours
[I,LD,P]) and when pruning the candidate windows with the sampling pro-
posed.

3. Ours [I,D,P], Sampling: Here we sample the bounding boxes propos-
als by p(furniture) + p(props) and augment the descriptor with the
probabilities from the semantic segmentation.

The Fq-score curve shows how we improve the baseline system, first by
augmenting the descriptor with the probabilities from the semantic seg-
mentation and then by sampling using the p( furniture) + p(props). When
setting a robotic system for real operation, we may determine a threshold
for the SVM-score, Fig. [9] depicts that after choose a threshold on one of the
datasets the rank of the three versions is maintained to new environments.
The major benefit in the sampling is reflected in the computational cost
given the number of discarded candidates before the feature computation.
For example in Fig. [10]left, without sampling, the cost for feature computa-
tion and SVM evaluation is 760ms and 60ms, respectively. Instead, with the
sampling, Fig. |10|right, the cost is 440ms and 20ms. In Fig. [11| we show the
frequency of speed-up for all the datasets. In the worst case there is almost
no gain in efficiency in cluttered scenes, and in other scenes (e.g. corridors)
we can get speed-ups of up to 4x.

The low Fi-scores for the object detector are due to the high proportion
of false alarms. We can see in Fig. [8| that we obtain several false alarms, but
a lot of them are because the ground truth bounding boxes are incomplete
and many objects which we successfully detect are not labelled at all. This
problem is easy to find in the research community as the labeling is gener-
ating only for the specific objects of interest in each paper. However, in real
life applications a robot can find a possible unlimited number of different
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Figure 10: On the left all the candidates, on the right the candidates after
pruning by the probability of the window to be furniture or props shown in
the middle (the darker the higher the probability).
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Figure 11: Frequency of speed-up for all datasets when using sampling driven
by p(props) + p(furniture).

objects and instances.

5.2.2 Comparisons

As comparison with the state of the art object detectors we include the re-
sults from the very recent Blnarized Normed Gradients (BING) objectness
estimation [6]. The source code is provided by the authors with a training
on PASCAL-VOC 2007 dataset. In Figs. and [14] we depict the per-
formance of BING detector and of our approach in terms of detection rate
(DR) vs false positives per image (fppi) and precision - recall (PR) curves.
The DR-fppi and PR curves show that our object proposal system is better
than the only-image state of the art. In the UWobj dataset BING is better
than ours in one portion of the curve, if more than 50 fppi are allowed in a

23



o
©

ours [I,D], No sampling ‘ ‘ ours [I,D], No sampling
0.7/ —ours [1,D,P], No sampling 05 ——ours [I,D,P], No sampling
06| ——ours [1,D,P], Sampling ’ —ours [I,D,P], Sampling
o Bin Bin
T o5 9 0.4 9
x> [l
c S
S04 2o3
5 o
+ 0.3 o
a 0.2
0.2
01 0.1
0 : : |
107 10° 10° % 0.2 0.4 0.6 0.8
fopi recall

Figure 12: NYU-V2 dataset. Left: Detection rate vs false positive per image.
Right: Precision vs Recall.
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Figure 13: B3DO dataset. Left: Detection rate vs false positive per image.
Right: Precision vs Recall.

real system, and the reason for this is that this dataset is the most struc-
tured one among the three datasets, with objects in table top setting and
in the center of the image.

6 Discussion

We have shown a basic implementation with real time capabilities that effec-
tively uses appearance and 3D cues to generate evidence about the structure
of the scene, while achieving better average and global accuracy of semantic
labeling compared to the state of the art. Note that the accuracy reported
by [10] was computed after training the system for 849 different classes and
then, the results were clustered into the four categories, indicating that their
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Figure 14: UWobj dataset. Left: Detection rate vs false positive per image.
Right: Precision vs Recall.

approach and features are less robust to the high intra class variability in
the four class problem.

We have shown that our graph structure induced by the MST over 3D
does not sacrifice the labeling accuracy, and keeps the intra-class compo-
nents coherently connected. Furthermore, by this selection we gain an exact
and efficient inference. The computational complexity for the inference is
O(nm?), where n is the number of nodes in the graph, and m the number
of classes. In that sense our approach is suitable for segmentation problems
with small number of classes. While the computational cost could violate a
real-time constraint for problems with large number of classes, we believe
that a reliable semantic segmentation system should follow a coarse to fine
strategy, where the labels for specific objects should be sought if necessary,
and not classify large number of different objects classes at once.

An interesting discussion is related to the choice of basic representa-
tion and the features. Authors in [35] use over 1000 dimensional feature
vectors, concatenating many engineered features, most of them developed
previously for diverse but related tasks. On the other hand, authors in [14]
propose to avoid the feature engineering and learn the features from the
data using convolutional networks. They are still using a 768 dimensional
feature vector for RGB channels, and the feature vectors have over 1000
dimensions when including the depth channel [10]. We can see that in both
approaches, feature engineering vs feature learning, high dimensional feature
space is constructed in which the different classes are more easily separable.
In this work we propose and demonstrate, that a fewer (12 dimensional) but
meaningful features are sufficient to obtain better semantic segmentation
in RGB-D scenes. In addition to the choice of features there are at least
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two more reasons for this improvement. First, selecting a well-performing
local classifier to handle high intra class variability: k-NN in our case vs
logistic regression [35], vs 2-layer multi-perceptron [10]. Second, defining a
more natural connections between neighbours given the type of data: mini-
mum weighted spanning tree over 3D distances in our system, vs connecting
with all the neighbours in the image [35], vs no connections at all between
superpixels [10]. Authors [14] shows a similar comparison.

We have also shown how to integrate the results of semantic segmenta-
tion with object detection, proposing a simple detector of generic objects
who’s shape can be well approximated by a bounding box. The performance
of the object detection in terms of precision recall is not on par with other
object detection results where large objects and more discriminative fea-
tures are considered [32]. This is partly due to the lack of correctly labeled
objects in the dataset (many small objects are part of the background class)
and simplistic boundary feature descriptor. More sophisticated descriptors
(e.g. [38]) and more accurate labeling can significantly improve the proposed
approach.

We plan to explore strategies for obtaining the observations in a multi-
scale way to improve the performance, this is inspired on the boosting
achieved by [14] when compare the multi-scale vs one-scale convolutional
networks.

We expect a C++/GPU implementation for our object detection to work
at more tha 10fps, a similar gain as for our semantic segmentation. Note that
BING detector [6] works with image information only, and it is still possible
to get a better performance by adapting it to take into account the depth
channel, and maybe the semantic class probabilities, although a reduction
in its efficiency is expected.
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