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Abstract— We consider the question of benchmarking the
performance of methods used for estimating the depth of a scene
from a single image. We describe various measures that have
been used in the past, discuss their limitations and demonstrate
that each is deficient in one or more ways. We propose a new
measure of performance for depth estimation that overcomes
these deficiencies, and has a number of desirable properties. We
show that in various cases of interest the new measure enables
visualisation of the performance of a method that is otherwise
obfuscated by existing metrics. Our proposed method is capable
of illuminating the relative performance of different algorithms
on different Kinds of data, such as the difference in efficacy
of a method when estimating the depth of the ground plane
versus estimating the depth of other generic scene structure. We
showcase the method by comparing a number of existing single-
view methods against each other and against more traditional
depth estimation methods such as binocular stereo.

I. INTRODUCTION

Single image depth estimation methods try to predict the
3D structure of a scene (i.e. the depth at each point in the
scene) from a single photometric view, thus recovering the
depth information that is lost during the imaging process.
Inspired in part by the ability of humans to perform this task
(albeit usually qualitatively), single-view depth estimation
has become an active area within the computer vision com-
munity, with various methods proposed recently, including
[, Bl 4, [7, Ol [TT] [T3]]. To evaluate and compare the effi-
cacy of these approaches, various metrics and methods have
been proposed. However, as we show in this paper, each of
these measures is deficient in one or more ways. To address
this issue we propose a new measure of performance for
depth estimation that has a number of desirable properties.

For most tasks, performance of a method to solve the task
is measured by comparing the output of the method against
some known ground truth. In our case, we are interested in
depth estimation, and the “ground truth” here is typically a
single depth image, normally acquired by a depth camera.
Most existing metrics for benchmarking single-view depth
estimation aim to capture, for each pixel in the predicted
image, the closeness of the prediction to the corresponding
pixel in the ground truth; i.e. they operate in the image space.
A number of such metrics have been reported for image
space comparisons, and we give an overview in Section
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Fig. 1: RGB image and the corresponding ground truth depth
obtained using a depth camera taken from the NYU-V2 dataset.

MM An issue with these metrics is that they assume that
the estimated and ground truth depth images have the same
resolution, which is often not the case in practice. They also,
typically address the issue of missing depth estimates by
calculating the metric only over the set of pixels where both
the prediction and the ground truth have values. However, as
we will show later, problems arise in scenarios where a pixel
by pixel comparison is not feasible against the full resolution
ground truth especially in cases when: a) the resolution of
the prediction does not match that of the ground truth, b) the
density of the prediction and ground truth are not the same,
or ¢) the coverage of the prediction is not the same as that
of the ground truth (more on coverage and density later).

In this work, we advocate that comparisons should always
be made against the given ground truth without up/down
sampling, without recourse to in-painting (hallucination) of
“ground truth”, and should adequately portray how much of
the ground truth is explained by each method. In particular,
unlike most previous comparison methods, we propose to
compare the predicted depths to ground truth in 3D-space
instead of the image space. Section |lII| defines our proposed
performance measure, and shows that it is agnostic to the
differences in resolution, density, and coverage between the
ground truth and the estimated depths.

Using the proposed measure, in Section [[V] we compare
the performance of state of the art single image depth
estimation methods for the NYU-V2 dataset [14]. This
dataset comes with hand labelled semantic segmentation
annotations. Then, we show how our performance measure
takes advantages of the semantic classes to give more insights
for each estimation method. Finally in Section [V] we also
show a comparison between classical stereo depth estimation
and single image depth estimation in an outdoors setting
using the KITTI dataset [3].

II. CURRENT METRICS

Given a predicted depth image and the corresponding
ground truth, with d, and d, denoting the estimated and



ground-truth depths respectively at pixel p, and T" being the
total number of pixels for which there exist both valid ground
truth and predicted depth, the following metrics have been
reported in literature:

o Absolute Relative Error [[13]
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o Linear Root Mean Square Error (RMSE) [8]
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e log scale invariant RMSE (as proposed in [4])
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where a/(d,, d,) addresses scale alignment.
o Accuracy under a threshold [7]]
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where th is a predefined threshold.

In the following, we present various cases which highlight
the deficiencies of these metrics. In the scenarios presented
here, the ground truth is taken from the NYU-V2 dataset
[14]. We use the in-painted depth from the NYU-V2 as
the estimation of the system since it is already close to the
ground truth, therefore, any minor differences introduced by
various transformations can be observed more easily.

A. Resolution

Single image depth estimation methods may predict a
lower resolution depth image compared to the ground truth.
Traditionally, comparisons for this case are done by down
sizing the ground truth to the size of the estimation. However,
if we insist on keeping the ground truth unchanged, the
prediction can be upsampled using an appropriate scaling.
A natural question is, which is a better way of comparing
the two? Should the ground truth be scaled down or the
prediction scaled up for comparison? Would the performance
metrics be different in both cases?

To observe the effect of different resolutions, we use 5
different sized depth estimations, each derived from the in-
painted depth using nearest-neighbour down-sampling: the
full resolution, half, and down to one-sixteenth of the original
image resolution. The results can be seen in Table [I| [In-
painting], where the ground truth has been down sampled
to match the resolution of the predicted depth. All the
predictions have more or less the same performance based
on these metrics.

Instead of down-sampling the ground truth, an alternative
approach would be to up-sample the depth predictions us-
ing some form of interpolation. Here, we use the bilinear
interpolation to up sample all the estimations to match the

same resolution as the ground truth. Once again, we present a
performance comparison using the traditional metrics (Table
[downscaling, then upscaling])

It is interesting to observe that in Table[l] the performance
at each resolution is now worse than the case in which
we down scaled the ground truth [downscaling]. Up scaling
creates information by interpolation, which may not always
agree with the ground truth at that particular pixel position.
The smaller the original resolution, the more we upscale
the prediction, and the more error we introduce; this is
reflected in the metrics. It should be noted that the initial
depth estimation is very accurate since it is derived from the
in-painted ground truth.

B. Density

Single image depth estimation involves predicting depth
for each pixel of the input image; we refer to this as “dense
estimation”. On the contrary, in robotics it is common to
track a set of sparse points while estimating their depth.
We refer to that scenario as being “sparse estimation”. In
this case, depth is not available for each pixel of the image
under consideration but only at a set of predetermined points
which satisfy a certain criterion (dominant corner, gradient
etc.). This scenario frequently arises in a robotics setting
when carrying out Simultaneous Localization And Mapping
(SLAM).

In the following, we show how the metrics behave with
respect to the density of the points. We extract dominant
corners, FAST keypoints [12], from the image and select
the corresponding depth from the in-painted depth as the
prediction for the extracted corner. This is repeated for a
range of points from 10 to 2000 (as shown in Table [
[keypoints]).

It can be seen from Table. |lf [keypoints] that these metrics
do not capture the complexity of the estimation as they
are all designed for dense estimation. Complexity in this
case just refers to the density of the prediction — predicting
the depth for fewer points is a less complex problem than
predicting a full dense depth image. In the case of sparse
prediction, the metrics are calculated over the intersection:
taking into consideration only the points that are common to
both the prediction and the ground truth. This introduces a
favourable bias towards systems that predict sparse depths,
but do so very accurately and in the extreme case, a single
point predicted extremely accurately will lead to a very good
score on most of these metrics.

C. Coverage

Another aspect of the problem is that of coverage, which
is related to density but has a slight different meaning. A
dense prediction that covers the whole image is said to have
full coverage. However, prediction can be dense without
covering the whole image (imagine the scenario when a
system predicts depths for just planar areas in the scene
such as ground or road). Evaluating this scenario has the
same issue as that of sparse estimation: the metrics are
evaluated over the intersection and therefore do not capture



TABLE I: Results on NYU-V2 dataset.

Errors Accuracy
Absolute RMSE 6 <
Method Relative | linear [m] | log.sc.inv. | 1.25[%] | 1.252[%] | 1.253[%)]
In-painting 1.2e-3 7.8e-2 11.4e-3 99.95 99.99 100.0
172 1.5e-3 7.7e-2 11.4e-3 99.95 99.99 100.0
downscaling 1/4 1.6e-3 7.8e-2 11.2e-3 99.95 99.99 100.0
1/8 1.6e-3 7.7e-2 11.2e-4 99.95 99.99 100.0
1/16 1.6e-3 7.6e-2 11.2e-4 99.95 99.99 100.0
downscaling 172 2.5e-3 8.5e-2 15.6e-3 99.91 99.98 100.0
then ? 1/4 3.7e-3 9.1e-2 19.2e-3 99.86 99.96 99.99
upscalin 1/8 6.7¢-3 10.9e-2 27.9e-3 99.70 99.95 99.99
pScaiing 1/16 128¢-3 | 15.0e-2 | 44.1e3 99.17 99.95 99.97
10 4.3e-3 12.6e-2 16.9¢-3 99.9 99.9 100.0
keypoints 100 4.1e-3 13.3e-2 20.7e-3 99.9 99.9 100.0
[#] 500 3.4e-3 11.5e-2 18.4e-3 99.9 100.0 100.0
1000 3.0e-3 10.7e-2 17.4e-3 99.9 100.0 100.0
2000 2.7e-3 10.3e-2 16.4e-3 99.9 100.0 100.0
18 1.2e-3 1.0e-2 5.3e-3 100.0 100.0 100.0
coverage 35 1.3e-3 3.1e-2 6.9¢-3 100.0 100.0 100.0
[%] 53 1.4e-3 7.3e-2 11.3e-3 100.0 100.0 100.0
Estimations Full Scene Evaluation
Mean 0.281 1.01 0.296 44.5 73.9 89.2
coarse 0.221 0.81 0.213 63.2 90.1 97.4
Eigen et Tcoarse 0.157 0.73 0.213 63.2 90.1 97.3
al. [4] fine 0.209 0.83 0.210 62.4 89.8 97.6
TMine 0.144 0.75 0.210 62.6 89.9 97.6
Liu er al.[10] 0.143 0.64 0.206 67.6 92.1 98.1
Eigen et multi 0.192 0.68 0.192 70.9 91.9 98.0
al. [3] Tmulti 0.139 0.63 0.192 70.9 91.9 98.0
Per Semantic Class
Floor
Floor Mean 0.144 0.51 0.059 80.6 98.4 99.8
Mean 0.175 0.71 0.090 62.3 924 98.8
Eigen et Tcoarse 0.154 0.57 0.102 71.7 95.5 99.3
al. [4] Tine 0.176 0.64 0.104 63.8 92.5 98.8
Liu et al.[10] 0.124 0.44 0.094 84.1 98.9 99.8
Eigen et al. [3] — Tmulti 0.093 0.37 0.085 90.3 97.5 99.6
Structure
Struct. Mean 0.371 1.22 0.261 43.2 71.9 88.2
Mean 0.376 1.22 0.250 43.6 71.9 87.2
Eigen et Tcoarse 0.200 0.82 0.169 65.2 91.1 97.6
al. [4] tMine 0.192 0.85 0.167 64.8 90.5 97.8
Liu er al.[10] 0.197 0.76 0.177 65.4 91.7 98.2
Eigen et al. [3] — Tmulti 0.188 0.71 0.155 70.8 92.4 98.2
Furniture
Furn. Mean 0.315 0.88 0.254 48.0 79.6 935
Mean 0.384 0.93 0.254 42.7 73.7 90.8
Eigen et Tcoarse 0.224 0.64 0.189 62.8 90.1 97.7
al. [4] Tfine 0.202 0.64 0.187 64.1 914 98.2
Liu et al.[10] 0.199 0.55 0.180 68.1 92.4 98.3
Eigen et al. [3] — Tmulti 0.198 0.58 0.175 69.3 92.0 98.2
Props
Props Mean 0.379 1.02 0.258 39.8 71.2 90.1
Mean 0.467 1.09 0.256 38.4 65.8 83.8
Eigen et Tcoarse 0.274 0.77 0.197 56.8 85.8 954
al. [4] Tfine 0.240 0.75 0.195 59.3 87.6 96.6
Liu et al.[10] 0.242 0.69 0.200 61.3 88.5 96.6
Eigen et al. [3] — Tmulti 0.254 0.74 0.192 61.7 87.0 96.0

the complexity of the problem. When making comparisons, a
system that does not predict at full coverage would therefore
have an unfair advantage over those that make a full dense
prediction.

To observe the effect of coverage on these metrics, we use
cropped versions of the in-painted depth at various coverage
levels as shown in Fig. 2] The evaluation is report in Table
[ [coverage], where the smallest coverage has the lowest
RMSE, that is, it performs better by predicting just 18%
of all the depths in the ground truth.

III. PROPOSED PERFORMANCE MEASURE
We propose to compare the predicted depth against the
ground truth in the 3D space instead of the image space. For
a pixel p with image coordinates u, and v, and a predicted
depth d,,, the point in 3D is given by

|
X=d,K 'xp
where K contains the known camera intrinsics and x, =

[up v, 1]". Similarly, for each point in the ground truth, a
corresponding point x in the 3D-space can be calculated.



Fig. 2: We evaluate the effect of three different partial coverages of
the scene. In the figure we show one depth image with rectangles
covering the 53% (blue, solid line), 35% (red, dot-dashed line) and
18% (yellow, dashed line) of the full scene.

For each point x; in the ground truth, we search for the
nearest point in the estimated depth and form a set of all
these nearest-neighbour distances:

S:{dl|dl:m1n||x,—fc||} (1)

This set has the same cardinality as the number of pixels in
the ground truth with valid depths. The objective function
minimised by the Iterative Closest Point (ICP) algorithm is
typically based on a sum or robust sum over S, and so our
measure naturally generalises to the case where there is a
rigid misalignment between the ground-truth and the esti-
mated depth (via application of ICP). In all the evaluations
we report, however, the depth esimates and ground truth are
already aligned.

For a given threshold D, we look for the distances in S,
that are less that D:

Sp = {dz|dz eESANd; < D} 2)

and plot the ratio of cardinalities |Sp|/|S| which represents
the fraction of ground truth that is explained by the estima-
tion with a distance less that D. This threshold is increased
until all of the ground truth is explained; that is, the ratio
reaches 1.

Comparison using the closest point error allows for
certain nice properties: it is no longer required to have
the same resolution of the estimation and ground truth
since a closest point always exists for each point in the
ground truth. A visual representation of the metric, where
each point in the ground truth is connected to its nearest
neighbour can be see in Fig. [3] Moreover, now we have
a systematic way of comparing estimations with different
densities and different coverages. To illustrate, we revisit
the scenarios presented in Section

Resolution: We first compare the performance using the
proposed measure for the five down-sampled resolutions
derived from the in-painted ground truth. The results are

Fig. 3: A toy example to evaluate the accuracy of the estimation
(red crosses) with respect to the ground truth (blue circles). The
cyan lines denote the closest estimated point to each ground truth
3D point.

presented in Fig.[4a] It can been seen that under this measure,
the difference in performance between various resolutions is
prominent with the full resolution in-painted depth perform-
ing the best. Under older metrics, all the resolutions had more
or less the same performance. The inset in Fig. ] shows a
zoom-in on the top-left corner to highlight the performance
of the curves starting very close to 1. As we expect, higher
resolution estimations perform better than lower resolutions.

The other case discussed in Section [MI] is that of up-
sampling the estimated depth to the resolution of the ground
truth. Under the proposed performance measure, Fig. {b]
shows a significant improvement for all curves. Up scaling,
while introducing errors in the image space, leads to a
reduction in the distance to the nearest neighbour (on
average) for each ground truth point in 3D-space. This
leads to the gain in performance reflected here. Later on,
for real single image depth prediction methods, we show
that the up scaling does not have a significant effect on
the performance measure. This is because the initial low
resolution estimation is far from the ground truth and then
the interpolation during up sampling does not help.

Density: It can be seen in Fig. {4c|that by requiring that each
ground truth point have a corresponding nearest-neighbour
in the 3D-space, sparser predictions are ranked correctly,
that is, in order of their complexity. This is true since the
estimated depth has been derived from the ground truth
and all the predictions for point depths are almost correct.
However, methods are penalized when the points are sparse
as the nearest neighbour for a ground truth lies farther away.

Coverage: The results for the proposed measure are shown
in Fig. which paints a more complete picture than the
scalar metrics in Table [} From the perspective of the possible
explanation of ground truth, higher coverage performs better.

Finally, we show a side-by-side comparison for all the
three previous cases in Fig. [5] where we show the full
in-painted prediction, a down-sample one-sixteenth version,
1000 strongest key-points, and a partial coverage scenario.
It can be seen that the partial coverage behaves the worst,
even though it starts off higher than other curves. The reason
behind this is that in order to explain the full ground truth
with the partial coverage, the nearest neighbour for the
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Fig. 4: Different cases evaluated in this section.
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Fig. 5: Comparison between 1/16 low resolution (40x30=1200
points), 1000 extracted keypoints, and a partial box of
540x100=54000 points (18% coverage).

ground truth point is further away than in all the other cases,
leading to the slow rise of the curve. It can be said that
the performance of the down-sampled prediction is better
than the keypoints as the down-sampled prediction provides
almost the same amount of point (1200) but does so over a
regular grid in the the 3D space (induced by the regularity
of the image grid), while the keypoints are not uniformly
distributed and are defined by the structure of the scene. The
proposed method allows us to compare these different kinds
of depth estimates which would not be meaningful under
traditional metrics.

IV. COMPARING THE STATE OF THE ART IN INDOORS

Previous sections presented some toy case studies of
various situations in which using the proposed measure leads
to a more meaningful comparison. This section provides
the performance evaluation of some of the state-of-the-art
algorithms using the proposed method; in particular we
provide results for Eigen et al. [4] (coarse, fine), Liu et al.
[10] and Eigen and Fergus [3].

The system of Liu et al. [10] makes the prediction at
the same resolution as the ground truth, while the other
two methods make depth prediction at lower resolution.
For the latter, we use both the original predictions as well
as upscaled version using bilinear interpolation. Table [
[Full scene evaluation] reports the comparison for all these
combinations as well as the mean of the training data.

We first consider the performance of the original (before
upscaling) predictions where the ground truth has been scaled
down to the same resolution as the prediction. Using the old
metrics there is a difference in ordering of performance when
we compare the upscaled versus the original predictions.
The accuracy under a threshold measure is not effected by
upscaling, but in general, simple upscaling leads to a better
performance on the other metrics, as well as permuting the
order of performance.

We now turn to the evaluation on the basis of the proposed
method, in Fig. [7]] The solid lines represent the original
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estimates, while the dashed lines represent the upsampled
versions. It can been seen that upsampling has no effect on
the order of the curves.

We also present the output of these methods at a resolution
matching the ground truth in Fig. [8] This gives an overview
of the performance for each method. For a given allowed
error, we can see the percentage of the ground truth that
is associated with that distance. Additionally, the curve that
remains higher than all the rest shows that is more accurate
at every given distance compared to other methods. We can
interpret this in terms of the distribution of the closest-point
distance from the ground truth. The sharp rise in the middle
indicates that the majority of distances lie in this area which
are responsible for explaining most of the ground truth.

A. Break down by classes

The comparison presented so far has been over the full
scenes in the NYU-V2 dataset without taking into account
the semantic segmentation the dataset also provides. Since
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Fig. 8: Performance of full resolution depth estimates: liu [10],

eigen_coarse and eigen_fine [4], eigen_multi [3]

our proposed method is resolution, density, and coverage
agnostic, we can use it to provide deeper insight into each
method to evaluate their performance on each individual
semantic class. The dataset provides ground truth semantics
for categories such as Floor, Structure, Furniture, and Props.

To evaluate the per class performance, we use only the
part of the ground truth with the particular class label
and compare it against the whole prediction. This allows
us to compare the semantic labels even when there is no
prediction of them in the original methods. We also report the
comparison of semantics against the mean of the dataset as
well the mean over each semantic category. This allows us to
have a “look under the hood” to find out why a given method
performs better than others. Some semantic categories such
as floor have lower complexity than others such as props,
due to intra-class variations in depths.

Performance for each semantic category is given in Fig. [9]
Curves that remain higher than the category mean have a
better prediction of the semantic category on average for
that class label. This can been seen in the Structure subplot,



where most of the methods are able to do a better job than
the category mean. On the other hand, Props and Furniture
are difficult categories for these methods. Eigen et al. [4]]
methods also seem to have some difficulty predicting Floor
depths correctly. This novel insight comes from the ability to
compare the depths class-wise without needing the prediction
of class labels from the methods being evaluated.

V. PERFORMANCE IN OUTDOORS

This section provides the performance evaluation of
Eigen et al. [4] and Cadena et al. [2] under our proposed
measure for an outdoors setting, specifically on the KITTI
dataset [5]]. Authors of [4] already provide the single image
depth estimations and the set of frames for testing.

This dataset provides 3D point clouds from a rotating
LIDAR scanner. We project the 3D information on the left
image for each frame to obtain the ground truth depth using
the official toolbox provided with the dataset. This projection
results in sparse depth images covering the bottom part of
the RGB image, see Fig. 0] left. This ground truth is used
for all the evaluations.

For comparison purposes and given that the dataset also
provides the right images, we compute the depth from
the stereo pair using the basic semi-global block matching
algorithm [6], in a setting which gives almost dense coverage.
We also compute the depth of around 1000 FAST extracted
keypoints [12] in the stereo images. An example of these
depth estimations from stereo is shown in Fig. [T0] middle.

With the traditional metrics, shown in Table |m, the stereo
estimations perform the best. Even the “dense” and “sparse”
estimation seems to perform equally well. This is another
example of the flaws of the currently used metrics. It is clear,
that the sparse stereo is giving us less information about the
scene, for which should be penalized.

On the other hand, our measure of performance, shown
in Fig. [T1] tells a better story with a coherent ordering of
the methods. The sparse stereo performs the worst, while
a denser stereo performs in general better than single image
depth estimation, as expected, since it provides more accurate
estimations while covering the whole scene. To note, the
estimations from [2] explain as much ground truth as the
dense stereo method up to ~ 15¢m of error, and are better
than [4] up to an error of ~ 40cm.

VI. DISCUSSION AND CONCLUSIONS

This paper has presented a better method for performance
evaluation of single image depth estimation methods. The
presented method is agnostic to the resolution, density and
coverage of the depth estimation and we have shown both
through case studies and real system evaluation that these
are desirable properties. This allows a uniform comparison
without altering the ground truth. Further, we have shown
that it allows a deeper understanding of why a certain method
performs better than the competition based on comparisons at
the semantic category level. Although not presented here, the
measure can be applied to methods that estimate both depth
and semantics. In that case, it would capture the performance
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Fig. 9: Evaluation per semantic class on NYU-V2.



TABLE II: Results on KITTI dataset.

Errors Accuracy
Absolute RMSE 0 <
Method Relative | linear [m] | log.sc.inv. | 1.25[%] | 1.252[%)] | 1.253[%)]
Sterco dense 0.077 4.36 0.179 93.9 96.9 98.2
sparse 0.073 4.53 0.180 93.2 96.1 97.8
Eigen et Tcoarse 0.255 6.60 0.448 64.7 86.3 93.7
al. [4) Tine 0.320 8.08 0.509 51.2 82.2 92.2
Cadena et rgb 0.291 8.65 0.363 59.7 79.1 89.4
al. [2] rgb-s 0.243 7.80 0.323 64.3 83.3 92.5

Fig. 10: One example from KITTI test set. Left to Right: RGB and ground truth depth from LIDAR, dense and sparse stereo depth,
Eigen et al. [4] coarse and fine estimations, and Cadena et al. estimations from rgb-only and rgb and semantics [2].
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Fig. 11: Performance of full resolution for two stereo densities
(dense and sparse), eigen_coarse and eigen_fine [4].

of both depth as well as semantic estimates in a single unified
way.

One assumption that we make is that the estimation
method actually tries to solve the problem rather than gener-
ating random depths over the image. To avoid those tricks it
is important to always assess the estimations quantitatively
and qualitatively. As we have already noted, our method also
generalises to the case where the ground truth and estimated
depth are measured in different coordinate frames; in this
instance we would first apply ICP to align the scenes, and
use the closest points found in that algorithm for our analysis.
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