
Incremental Segment-Based Localization in 3D Point Clouds

Renaud Dubé∗, Mattia G. Gollub∗, Hannes Sommer, Igor Gilitschenski,
Roland Siegwart, Cesar Cadena, and Juan Nieto1

Abstract— Localization in 3D point clouds is a highly chal-
lenging task due to the complexity associated with extracting
information from 3D data. This paper proposes an incremental
approach addressing this problem efficiently. The presented
method first accumulates the measurements in a dynamic voxel
grid and selectively updates the point normals affected by the
insertion. An incremental segmentation algorithm, based on
region growing, tracks the evolution of single segments which
enables an efficient recognition strategy using partitioning
and caching of geometric consistencies. We show that the
incremental method can perform global localization at 10Hz
in a urban driving environment, a speedup of x7.1 over the
compared batch solution. The efficiency of the method makes it
suitable for applications where real–time localization is required
and enables its usage on cheaper, low–energy systems. Our
implementation will be available open source after publication
along with instructions for running the system.

I. INTRODUCTION

Perception capabilities are a key requirement for robots to
perform high–level tasks like navigation and interaction. For
this reason, mobile robots are often equipped with 3D time-
of-flight sensors which can produce precise reconstructions
of the environment. Processing these detailed data can how-
ever result in high computational costs. Amongst important
capabilities which can strongly benefit from efficient solu-
tions, we focus on the challenging task of localization in 3D
point clouds. Making global associations in 3D data permits
us to construct an unified representation without making an
assumption of low drift, or known relative starting position,
in case of multi-robot applications.

This work presents an incremental solution to localization in
3D point clouds based on the principle of segment extraction
and matching from accumulated data [1]. As demonstrated
in our previous work, accumulating data can help recognize
places which are observed from different viewpoints [2].
However, fully processing such representation at each time-
step leads to expensive redundant computations. Therefore,
we propose to reuse the processed information by retaining
data structures that are likely to save computations in later
localization attempts.

The first module of the presented solution accumulates and
filters a continuous stream of 3D point cloud data through
a Dynamic Voxel Grid (DVG), providing information about
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Fig. 1: Example of localization made by our incremental approach in a
urban driving scenario. The robot is driving from right to left and its
trajectory is shown in orange. Segments are extracted, tracked and merged
over successive observations. At t = 2 a localization is made against the
target map with segment correspondences denoted by green lines.

newly occupied voxels. This key information is leveraged
for estimating normals by re-computing only those affected
by newly occupied voxels and by caching information
to incrementally compute covariance matrices. Incremental
region growing segmentation is then performed by using
only the newly occupied voxels as seeds and by merging
with previously clustered points. As illustrated in Fig. 1,
this strategy enables to robustly track segments between
successive observations which offers multiple benefits to the
overall framework. Amongst others, it enables the final stage
of our solution: an efficient recognition strategy based on
partitioning and caching of geometric consistencies.

To the best of our knowledge, this is the first work to propose
combining incremental solutions to normal estimation, seg-
mentation, and recognition for finding global associations in
3D point clouds. The full solution is evaluated in real-world
experiments demonstrating localization rates of up to 10Hz.
We also show that the efficiency of the presented method
makes it suitable for real–time applications and enables its
usage on cheaper, low–energy systems.

To summarize, this paper presents the following contribu-
tions:

• An incremental method for localization in 3D point
clouds based on segment matching.

• A set of incremental algorithms for the normal estima-
tion, segmentation, and recognition steps.



• An exhaustive comparison of the incremental approach
with a batch solution through disaster response and
urban driving experiments.

The remainder of the paper is structured as follows: Sec-
tion II provides an overview of the related work, and Sec-
tion III describes the proposed incremental approach. The
incremental approach is compared to a batch solution in
Section IV, and Section V finally concludes the work.

II. RELATED WORK

An overview of the related work in the field of localization in
3D point clouds was presented in our previous work [1]. In
this section we review previously proposed methods related
to the two core modules of our approach: efficient point cloud
segmentation, and geometric verification.

a) Incremental point cloud segmentation: Closely related
to our work, Whelan et al. [3] proposes an incremental
region growing method for segmenting dense point cloud
maps. Segmentation is done only once for each input cloud
with a merging step afterwards. Only planar segments were
considered whereas our generic region growing algorithm
allows for different tuples of growing policies. Tateno et al.
[4] merge RGB-D data into a global segmentation map that is
maintained by matching and propagating segments extracted
from the current depth map. Similarly, Finman et al. [5]
propose to segment the depth maps using an incremental
variation of the graph-based Felzenszwalb algorithm. A
voting algorithm is proposed for recomputing parts of the
segmented map given new data. None of the above works
proposed a solution for retrieving models based on the
generated segments. Contrastingly, we show through multiple
experiments that our incremental region growing algorithm
can effectively be leveraged for localization.

b) Efficient geometric verification: Strategies for reducing
the number of correspondence pairs have been proposed
for stereo images. Ayache and Faverjon [6] describe a
partitioning scheme for efficiently finding neighbor segments
in stereo images, while [7] performs RANSAC only on
spatially consistent correspondences, i.e. correspondences
that have a minimum fraction of matching neighbor features
in both images. Both methods rely on assumptions about the
disparity between images, thus their accuracy is influenced
by the presence of high disparity and strong variation in
viewing angles. In this work we present a method for
performing localization efficiently through partitioning and
caching, reducing the asymptotic complexity of the geomet-
ric consistency grouping method [8].

III. METHOD

This section introduces our incremental solution to localiza-
tion in 3D point clouds and the contributing modules. An
overview of the approach is depicted in Fig. 2.
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Fig. 2: Architecture of the incremental segment matching pipeline and its
interface with a laser SLAM framework1.

A. Dynamic Voxel Grid

The continuous input stream of 3D points is filtered and
accumulated in a local cloud using a voxel grid approach.
Instead of performing batch voxel filtering of the entire local
cloud with each new measurement, we add and update only
voxels that are affected by the new points. We implemented a
DVG, an efficient data structure supporting dynamic insertion
and removal of points. Occupied voxels are stored in a vector
in increasing voxel index order. Each voxel maintain its
index, centroid, and the number of points it contains. In order
to reduce noise, a voxel is considered active if it contains at
least a desired amount of points. For the successive stages
of the pipeline, only active voxels are used.

1) Voxel Indexing: Virtually, the voxel grid is a regular grid
of size l × w × h voxels, where each voxel has a unique
index in the interval [0, l · w · h− 1]. The grid has a fixed
resolution r and a rigid transformation from the grid frame
to the map frame Tmg which is initialized such that the robot
starts at the center of the grid. Indexes are stored in b–bits
unsigned integers, for computational efficiency we require
the sizes of the grid to be powers of 2: l = 2lbits , w = 2wbits

and h = 2hbits , where lbits + wbits + hbits ≤ b. The voxel
index I (q) of a point q is computed as:

I (q) = bt.xc+ bt.yc � lbits + bt.zc � (lbits + wbits) (1)

where � is the bitwise left shift operator and t corre-
sponds to the grid coordinates of the point q according to:
t = T−1mg · q · r−1.

2) Insertion and Removal: When new points are inserted,
the DVG computes their voxel indices and sorts them in
increasing voxel index order. Considering that sorting has
an asymptotic complexity O (n log (n)), this is an important
optimization over sorting all the points as performed in batch
voxelization. Once new points are sorted, they are added to

1In this work we use an incremental pose-graph SLAM system which
performs registration between successive LiDAR scans using Iterative
Closest Point (ICP) [2]. The implementation is available at github.com/
ethz-asl/laser_slam.

github.com/ethz-asl/laser_slam
github.com/ethz-asl/laser_slam


the existing voxels in linear time with a merge operation:
When m points qi are inserted in a voxel with centroid p
downsampled from n points, its properties are updated as:

p←

(
n · p+

m∑
i=1

qi

)
· 1

n+m
, n← n+m (2)

In addition, the indices of the voxels that turned active
after the insertion are collected in a set U , so that the
normal estimator and the segmenter can operate on the new
voxels only. When the robot moves, the DVG is updated by
removing voxels that fall outside the radius of the local map.

3) Rigid Transformation: When a loop closure is detected,
the SLAM application re–evaluates the trajectory of the robot
and provides a new estimation of its pose. Consequently,
the local cloud must be updated with a rigid transform T
which is applied to the centroid of each voxel. Moreover, in
order for new points to be assigned to the correct voxel, the
transformation of the DVG is updated as Tmg ← TTmg .

B. Incremental normal and curvature estimation

The normal of a point pi in a 3D point cloud is commonly
estimated from the covariance matrix M of a neighborhood
N (pi) [9]. After finding the neighborhood by fixed–radius
Nearest Neighbors (NN) search and arranging the neighbor
points in a ni-tuple {νj}ni

j=1 := N (pi), Mi is computed as
a sample covariance, using · to denote the average operation,
i.e. νj := 1

|ν|
∑|ν|
j=1 νj , omitting the index if unnecessary:

Mi := (νj − ν)(νj − ν)ᵀ, (3)

The estimate of the normal is equal to the normalized
eigenvector of Mi corresponding to the smallest eigenvalue,
while the curvature is computed as σ = λ0(λ0+λ1+λ2)

−1

where λ0 < λ1 < λ2 are the eigenvalues of Mi.

In this work, we apply two major optimizations to make the
process incremental: The covariance matrix Mi is computed
incrementally and only normals affected by new scanned
points are updated. By expanding the factors in eq. (3), we
obtain an incremental formulation:

Mi = νjν
ᵀ
j − ννᵀ =

1

ni
·Ai −

1

n2i
· bibiᵀ (4)

where Ai and bi are respectively the accumulators for νjν
ᵀ
j

and ννᵀ. The advantage of this formulation over eq. (3) is
that it can be computed incrementally, without the need to
keep track of the neighborhood N (pi) of each point. For
reference, a similar formulation is introduced by Poppinga
et al. [10] for performing efficient batch plane detection in
3D point cloud data.

1) Incremental Updates: The accumulators of each point are
computed incrementally following a contributions scattering
and gathering procedure. For each new point index i ∈ U
accumulators Ai, bi and ni are initialized with 0 and for each

pj ∈ N (pi), including already the new points, contributions
are scattered as:

Aj ← Aj + pipi
ᵀ, bj ← bj + pi, nj ← nj + 1 (5)

Similarly, contributions are gathered from old points only,
i.e. if j /∈ U :

Ai ← Ai + pjpj
ᵀ, bi ← bi + pj , ni ← ni + 1 (6)

Finally, covariance matrices, normals, and curvatures are re-
computed for points whose accumulators have been updated.

2) Rigid Transformation: In the event of loop closures, the
trajectory of the robot is re–estimated and a rigid trans-
formation is applied to the filtered point cloud C. When
this happens, we transform the accumulators in order to
avoid inconsistencies caused by the accumulation of points
belonging to different reference frames.

The transformation, expressed as translation t after rotation
R, is applied to all points pi belonging to the local cloud as
pi ← Rpi + t. Let ν̃ := (Rνj + t)

ni

j=1 be the transformed
neighborhood tuple of the point pi. Then the updated sample
covariance (4) for ν̃ can be computed using:

ν̃j ν̃
ᵀ
j = Rνjν

ᵀ
j R

ᵀ +Rνtᵀ + t νᵀRᵀ + ttᵀ (7)

ν̃ = Rνj + t = R ν + t (8)

Thus, the accumulators are updated as:

Ai ← RAiR
ᵀ+Rbit

ᵀ+tbi
ᵀRᵀ+nitt

ᵀ, bi ← Rbi+nit (9)

The normals are updated as: Ni ← RNi, while the point
curvatures are not affected by the transformation.

C. Incremental region growing segmentation

This section presents our generic algorithm for incremental
segmentation of 3D point clouds based on region growing
policies. Given the low fraction of new points added with
each measurement, we achieve an efficient segmentation by
using only new points as seeds for growing regions.

Algorithm 1 shows the pseudocode for growing a region
in a 3D point cloud starting from a seed point with index
s. Growing is performed using the seeds contained in the
ordered seeds list provided by the PREPARESEEDS policy.
The growing strategy is controlled by the CANGROWTO
and CANBESEED policies, which respectively determine if
growing from a seed to a neighbor is allowed and if a point
can be used as seed. The result is a cluster Γ with a unique
cluster ID γ. New unclustered points initially have no cluster
ID assigned. The NN function on line 5 finds the neighbors
of a point by fixed–radius search. In order to reduce the
number of k–d tree constructions, the same tree is shared
with the normal estimator. Future work could gain efficiency
over this approach by exploiting the underlying structure of
the DVG through organized region growing segmentation.

Once all points have been clustered, clusters that reached
a minimum number of points are promoted to segments



Fig. 3: An illustration of three segments being incrementally grown over
successive observations.

(a) (b) (c)

Fig. 4: Region growing and merging examples using Euclidean distance
policies in 2D. (a) An unclustered point is reached and added to the current
cluster. (b) An existing cluster (blue) is reached and linked to the growing
region (orange). (c) A current cluster (orange) reaches and is linked with
two other clusters (blue and green).

and obtain a unique segment ID. A mapping from cluster
to segment IDs is maintained in order to enable segment
tracking (section III-C.3). An example of segments being
grown over multiple observations is depicted in Fig. 3.

Algorithm 1 Incremental region growing given a starting
seed s, a point cloud P and a new cluster ID γ.

1: function GROWFROMSEED(s, P, γ)
2: Γ ← {s} , S ← {s} // Initialize cluster and set of seeds.
3: while Seeds 6= ∅ do
4: s← POPFRONT(S)
5: for each n : NN(s, P ) do
6: if CANGROWTO(s, n) then
7: if HASCLUSTERID(n) then
8: LINKCLUSTERS(s, n, γ)
9: else

10: SETCLUSTERID(n, γ)
11: Γ ← Γ ∪ {n}
12: if CANBESEED(n) then
13: S ← S ∪ {n}
14: return Γ
15: end function

1) Clusters merging: While batch algorithms only need to
cover the cluster growing case, the incremental version must
also handle the cluster merging case (see Fig. 4). This is
illustrated on line 8 where a point that has been previously
assigned to another cluster is reached. In this case, the
two clusters are merged and obtain the same cluster ID. If
both clusters already have a valid segment ID (Fig. 4c), the
minimum (i.e. the oldest) segment ID is used for the resulting
set. In SLAM applications, this causes the segments to be
merged in the target map as well.

2) Growing policies: In this work, we present two triples
of policies for our incremental region growing algorithm.

(a) (b) (c)

Fig. 5: Evolution and tracking of segments as the robot moves. The black
circle represents the boundary of the local map. In this example, the
minimum size a cluster must have in order to be considered a segment
is 3. (a) The robot observes a segment (blue) and a cluster (orange). (b)
As the robot moves, more points are inserted in the local map. The orange
cluster turns into a segment and another cluster appears. The blue segment
grows but maintains the same ID. (c) From a different perspective, more
points are observed, triggering the merge of the blue and orange segments.

The smoothness constraint policies are derived from the
work by Rabbani et al. [11]. During the preparation phase,
PREPARESEEDS collects the indices of the points that pass
the CANBESEED test and sorts them in increasing curvature
order. This guarantees that regions are grown starting from
the flattest points, reducing the number of segments created.
CANGROWTO returns true if the normals of the seed and
neighbor points are close to parallel. Since the orientation of
the normals is unknown, this is approximated by checking
that the magnitude of the dot product between the two
normals falls below a given threshold. Another maximum
threshold is applied on the point curvature in order for the
CANBESEED test to pass.

The Euclidean distance policies are straightforward as the
incremental region growing algorithm already finds candidate
neighbors based on their euclidean distance. Therefore, both
CANGROWTO and CANBESEED always return true and
PREPARESEEDS simply collects the indices of points that
are not yet assigned to a cluster.

3) Segment Tracking: While cluster IDs are only temporary
values used for identifying points belonging to the same clus-
ters, segment IDs are lifetime–long identifiers of segments.
The segmentation procedure presented in this section allows
us to robustly track segments and their successive views in
the local map which offers multiple benefits.

In the previous work [1], multiple views could not be asso-
ciated to the same segment and would obtain different IDs,
causing the insertion of segment duplicates in the target map.
Although heuristically identifiable by small distances be-
tween segment centroids, precise detection of such segments
was not possible. Contrastingly, our method can robustly
track segments and update them in the target map. Segment
tracking also enables correspondences caching, which is
needed by our incremental recognition approach (Section III-
D). Moreover, having access to the complete history of the
observations of each segment enabled the development of a
method for learning segment descriptors that are more robust
to changes in point of view [12]. Future work will explore
different methods of leveraging the segment view history for
improving segment matching performance.



D. Graph-based incremental recognition

Segments extracted from the local cloud are described with
generic feature vectors (an eigenvalue-based descriptor [13]
is used in the experiments of Section IV). Candidate corre-
spondences between segments in the local and target maps
are then found through NN searches in the feature space.
A pair ci, cj of correspondences is called geometrically
consistent if the difference of the Euclidean distance between
the segment centroids in the local map and in the target map
is less than a threshold ε, i.e. if

|dl (ci, cj)− dt (ci, cj)| ≤ ε, (10)

where dl (ci, cj) and dt (ci, cj) are the distances between
centroids in the local map and in the target map respectively.
In our approach we formulate recognition as a graph problem
with the goal of identifying a Maximum Pairwise Consistent
Set (MPCS), which is a set of maximum size among all cor-
respondence sets that are pairwise geometrically consistent.

Geometrical consistency relationships are encoded in a con-
sistency graph G = (V,E) where V = {ci} is the set of
correspondences ci and E = {eij} is the set of undirected
edges eij connecting all consistent pairs of correspondences
(ci, cj). Identifying a maximum geometrically consistent set
is then equivalent to finding a maximum clique of G.

We take advantage of the segment tracking feature described
in section III-C.3 which enables us to track correspondences
as well. The number of consistency tests performed is
reduced in an incremental fashion by reusing information
computed in previous recognition steps. Since the insertion
of new points in a segment changes its centroid, caching
consistencies directly is not efficient. We rather propose to
cache, for each correspondence ci, a set of correspondences
S (ci) ⊂ V that are candidate to be consistent with ci.

Based on eq. (10) we define the consistency distance, a
measure for how far two correspondences ci and cj are from
being consistent:

∆ (ci, cj) = |dl (ci, cj)− dt (ci, cj)| (11)

For each ci, its consistent candidates set S (ci) is then
defined as the set of correspondences cj whose consistency
distance to ci falls below a maximum threshold θ∆:

S (ci) = {cj ∈ V | j ≤ i ∧∆ (ci, cj) ≤ θ∆ + ε} (12)

where ε is the tolerance for consistency and the condition
j ≤ i prevents duplicate entries of the same pair (caused by
the symmetry of the consistency relation) from being stored.

1) Cache Maintenance: When a correspondence ci is found
for the first time, S (ci) is computed and stored in the
cache, together with the centroids of the local and target map
segments. When a correspondence is not observed anymore,
all references to it are removed from the cache. Further-
more, the consistent candidates set of a correspondence is
invalidated if its two centroids move in total by more than
1
2θ∆. The total movement is computed as the sum of the
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Fig. 6: An example of consistency cache maintenance. Correspondences
have arbitrary positions, while the distance between correspondences rep-
resents their consistency distance according to eq. (11). Arrows point from
correspondences to their consistent candidates and circles represent the
threshold for caching θ∆. (a) The correspondences c1, c2 and c3 are inserted
in the given order, and c2 is found to be a candidate for consistency with c1.
(b) When c4 is inserted, caching c1 and c2 as candidates for consistency.
(c) The centroid of a segment of c4 changes by a distance smaller than
1
2
θ∆, thus its cached information is still valid. c2 changes by a distance

greater than 1
2
θ∆, thus its consistent candidates are recomputed.

(a) (b)

Fig. 7: A consistency graph example where nodes and edges represent cor-
respondences, plotted at their target map centroid’s position, and tested pairs
respectively. (a) Current approaches need to test all possible correspondence
pairs for consistency. (b) Our partitioning approach allows to drastically
reduce the number of consistency tests.

distances of each centroid to its cached position. This ensures
that pairs of correspondences initially considered inconsistent
are reconsidered if the combined movement of the segment
centroids can cause them to be consistent. Correspondences,
whose consistent candidate set has been invalidated, are
reinserted in the cache as new correspondences. Fig. 6 shows
an example of consistency cache maintenance.

2) Consistent candidates set identification: In order to ef-
ficiently determine the consistent candidates set of a corre-
spondence, we adopt the following partitioning approach. In
order for two correspondences to be consistent, the distance
between their target segments must be less or equal to the
diameter of the local map. Thus we propose to prefilter candi-
dates using a partition of the correspondences corresponding
to the position of their target segment centroids in a regular
grid with a cell edge length equal to the diameter of the local
map. All the elements of S (ci) can then be found among
the correspondences whose target map centroid belongs to
the same or to a neighbor partition as shown in Fig. 7. This
process is described in detail in our workshop report [14].

3) Consistency Graph Construction: Consistencies involv-
ing new correspondences are identified while searching for
their consistent candidates sets. For all other correspondences
ci, consistency tests only need to be performed for all the
cached candidates, i.e. for {ci} × S (ci).

4) MPCS Identification: We consider a recognition to be
successful in case the size of the detected MPCS set is
greater than or equal to a threshold parameter T . Thus we



need to identify a maximum k–clique with k ≥ T . Since the
consistency graph is sparse, we can rely on a particular class
of algorithms [15] to find a maximum clique in linear time.

IV. EXPERIMENTS

In this section we evaluate the proposed incremental ap-
proach to localization in 3D point clouds. The performance
of the system is first evaluated and compared to a base-
line solution through three experiments. Finally, we present
a challenging, large–scale, multi–robot, SLAM application
which is made possible with the proposed approach.

A. Baseline

The baseline used for the comparison is the original
SegMatch implementation [1] which is composed of standard
Point Cloud Library (PCL) components. Specifically, batch
voxel filtering is performed by the pcl::VoxelGrid
while batch normals estimation is achieved with
pcl::NormalEstimation. Batch segmentation is pro-
vided by pcl::EuclideanClusterExtraction and
pcl::RegionGrowing. Recognition is finally performed
using pcl::GeometricConsistencyGrouping.

B. Performance

The proposed solution and the baseline have been bench-
marked in three different conditions:

• KITTI Localization: The vehicle drives in a known
urban scenario, continuously localizing against a map
generated from sequence 00 of the KITTI dataset [16].

• KITTI SLAM: The vehicle explores an unknown urban
scenario, continuously updating a dynamic target map
and trying to detect loop-closures (KITTI sequence 05).

• Powerplant Localization: A rescue robot drives in
a known indoor scenario continuously localizing. The
dataset has been recorded at the Knepper powerplant in
Dortmund in the context of the TRADR project [2].

For both solutions, segments are extracted using Euclidean
distance policies for the KITTI scenarios and with smooth-
ness constraints policies the powerplant scenario. Seg-
ments are always described using eigenvalue-based fea-
tures [13].The other parameters are detailed in Table I and
have been found experimentally to yield good performance
for both the baseline and proposed solutions. Note that
coarser grid resolutions and higher minimum number of
points results in fewer active voxels and faster segmenta-
tion rates. However, the resulting segments could be less
descriptive of the actual scene objects.

1) Hardware: All experiments have been performed on a
system equipped with 32GB of RAM and an Intel i7–6700K
processor.The segment matching pipelines run in single–
threaded mode and, for all experiments presented in this
paper, the RAM usage of the whole system, including 3D
mapping and trajectory estimation, never surpassed 1.6GB.

Parameter KITTI Powerplant

Local map radius (m) 50.0 25.0
DVG resolution r (m) 0.1 0.1
Min number of points for activating voxel 1 2
NN search radius for growing (m) 0.2 0.5
Max angle between normals for growing (degrees) – 4.0
Max point curvature for using as seed (m−1) – 0.05
Max distance for consistency ε (m) 0.4 0.4
Min MPCS set size T 5 6

TABLE I: Parametrization of the segment matching modules.

2) System performance: The timings and speedups resulting
from these experiments are presented in Table II. Details are
given separately for each module, to which an incremental
solution is proposed, and for both the baseline and the
proposed approaches. The category others includes segment
description, matching, and, in the SLAM experiment, target
map construction. Note that the batch method additionally
requires 10ms for associating segments when updating the
target map whereas this is obtained directly in the incremen-
tal solution. In event of loop closures, an average of 22.8ms
more is required by both methods for updating the target
map and the k–d tree used for matching segments.

In all experiments, the proposed localization approach can
process the measurements faster than the update rate of
the sensor. This is particularly interesting in the KITTI
experiments where our approach allows to process in real-
time the large data throughput of the Velodyne HDL-64E.
The overall speedups achieved by the incremental approach
over the batch solution are 8.9x, 7.1x, and 12.4x respectively
for each scenario. The processing rates achievable by the in-
cremental pipeline range between 13Hz and 25Hz depending
on the experiment. However, in practice, these values are now
limited by the sensor frequencies. Further detailed statistics
about the experiments are summarized in Table III.

We observe that successful localizations are generally based
on a redundant amount of correspondences. Since the recog-
nition step automatically rejects inconsistent candidate cor-
respondences, the algorithm is still able to localize even
in moderately dynamic environments. As an example, the
localization shown in Fig. 1 is based on 18 candidates. Since
we require at least T = 5 correspondences, localization
would still be successful even if the parked cars would
move. Future work could further improve the robustness to
dynamic objects by (1) leveraging semantic information that
can be extracted from machine learning-based segment de-
scriptors [12] and (2) simultaneously using multiple growing
policies in order to generate more candidate segments.

3) Dead reckoning distances: The higher localization rates
of the proposed method results in lower dead reckoning
distances. This is illustrated in Fig. 8 which shows the
probability of traveling a specific distance without successful
localization in the map generated from KITTI sequence 00.
See [1] for a definition of this metric. With the proposed
incremental approach, localization happen within 1.5m more
than 90% of the times, while the original approach can



TABLE II: Runtimes of the modules of the batch and incremental approaches (ms).

Module
KITTI Localization KTTI SLAM Powerplant Localization

Batch Incremental Speedup Batch Incremental Speedup Batch Incremental Speedup

Voxel filtering 56.9± 19.2 4.2± 2.8 x13.5 69.6± 35.1 4.11± 1.88 x16.9 32.7± 18.7 1.7± 0.8 x18.8
Normal estimation - - - - - - 166.4± 64.9 10.2± 1.6 x16.4
Segmentation 389.7± 147.8 40.7± 13.4 x9.6 395.1± 123.0 44.5± 15.2 x8.9 275.5± 112.5 22.4± 8.6 x12.3
Recognition 85.4± 39.7 6.0± 3.2 x14.2 41.3± 54.5 3.5± 4.15 x11.8 0.7± 0.5 0.1± 0.05 x7.4
Others 10.0± 3.6 10.2± 3.5 - 34.4± 19.7 23.9± 12.7 - 3.7± 1.7 4.4± 1.9 -

Total 542.1± 210.3 61.2± 23.0 x8.9 540.4± 232.3 76.0± 33.9 x7.1 479.1± 198.2 38.7± 13.0 x12.4

KITTI KITTI Powerplant
Quantity (per–step) Localization SLAM Localization

Sensor rate 10Hz 10Hz 0.33Hz
Created voxels 2.1k±0.6k 2.1k±0.7k 2.2k±0.3k
Local cloud size 156.5k±50k 159.5k±41k 76.5k±34k
Modified normals - - 10.6k±3.3k
Local map clusters 9.1k±3.9k 8.6k±2.1k 7.4k±2.4k
Local map segments 52.8± 13.7 60.1± 13.8 42.7± 20.9

Target map segments 1204 847± 423 83

Partitions 25 8.2± 3.9 1

Correspondences 3.1k±0.9k 1.6k±1.0 103± 55

Cached correspondences 2.8k±0.8k 1.5k±0.9k 95± 53

Cache invalidations 2.3± 8.4 1.8± 6.3 0.1± 0.3

TABLE III: Statistics (mean and standard deviation) characterizing the
different experiments. Values refer to observations made in one localization
step. It is interesting to note some strong differences between experiments
(e.g. number cache invalidations) caused by the changes in scenario and
configuration.

Fig. 8: Probability of travelling a specific distance without a successful
localization (data recorded during 5 runs of the KITTI localization example).

localize within the same distance less than 10% of the times,
occasionally traveling more than 10m without localization.

4) Dynamic Voxel Grid: As described in Section III-A, voxel
filtering requires a sorting step to group points belonging
to the same voxel. This O (n log n) step has a significant
impact when the local cloud contains a lot of points. With
the incremental approach, this operation is reduced to sorting
only the new points and then merging them with the stored
sorted points in linear time. As shown in Table III, the new
voxels represent only a small fraction of the entire local
cloud, justifying the speedups observed in Table II. The
timings stated for the voxel filtering include one pose update
(removal of voxels outside the radius of the local cloud) and
one insertion of the queued scans.

5) Incremental normals estimation: Normal estimation has
been evaluated in the powerplant scenario only, as the

Figure 9: Mean runtime of the
recognition stage with differ-
ent caching radii. None indi-
cates the pure partitioned ap-
proach without caching. In this
dataset the ideal compromise
between caching and invalida-
tion is about 3m.

Euclidean distance policies used in the KITTI examples do
not require point normals. In this case, a speedup of 16.4x
is observed which is explained by the smaller number of
NN searches required and by the caching of the covariance
matrices. Furthermore, our implementation allows us to reuse
the k–d tree built for segmentation which was not performed
in the batch solution. In an equitable comparison where both
estimators need to build a k–d tree of the local cloud, the
incremental approach is in average 7.1 times faster.

6) Incremental region growing segmentation: Similarly, the
most important improvement factor for the segmentation
module is the reduction of the number of NN searches
performed at every step. This is achieved by reusing stored
information about the clusters in the cloud and only starting
region growing from new unsegmented points. As stated in
Table II, incremental segmentation achieves speedups over
the batch methods of 9.6x, 8.9x and 12.3x.

7) Graph–based incremental recognition: Thanks to the
partitioning scheme and the incremental caching, our recog-
nition method reached speedups of 14.2x, 11.8x and 7.4x
respectively. Moreover, the runtime of our method scales
linearly with the number of correspondences, significantly
improving over the cubic scaling of the batch algorithm
(see Gollub et al. [14] for an asymptotic complexity analy-
sis). Interestingly, cached correspondences represent > 90%
of the total correspondences (Table. III), but are tested
for consistency faster than new correspondences. In the
KITTI localization experiment, the incremental recognizer
performed on average 313k and 30k consistency tests on new
and cached correspondences respectively. This is only 7.2%
of the ~4.7 million tests performed by the batch solution at
each recognition step. In the powerplant experiment, both
recognizers can test for consistencies very quickly as the
target map contains only a small number of segments.



Figure 10: A top-down il-
lustration of a common
representation constructed
in real-time on a sin-
gle computer, by simulat-
ing five autonomous vehi-
cles equipped with Velo-
dyne HDL-64E sensors.
The segments centroids
are colored according to
their associated vehicle
trajectories.

The effect of different thresholds θ∆ on the consistency
distance for caching is compared Fig 9. Whereas high values
of θ∆ result in a lot of cached candidates, requiring a
high number of consistencies tests, small values increase
the number of invalidated cache entries. Therefore, the best
setting for the radius is a trade-off between number of cached
candidates and invalidation frequency.

C. Large-scale multi-robot experiment

This final experiment shows that the performance of the
presented incremental approach enables us to address chal-
lenging SLAM scenarios. In order to simulate a multi-robot
scenario, sequence 00 of the KITTI odometry dataset is
split into five sequences which are simultaneously played
back for a duration of 114 seconds. The data generated by
five Velodyne HDL-64E sensors are processed in real-time
on a single computer, in order to identify sufficient global
associations to link the trajectories.

Although successful results were demonstrated in multi-robot
scenarios with the batch approach [2], we found that it did
not scale well to this higher number of vehicles. Specifically,
its lower processing rate led to the extraction of too few
segments, preventing the association of some trajectories.
Contrastingly, our incremental approach successfully closed
more than 100 loops which enabled to construct, in real-time,
the common representation illustrated in Fig. 10. Similarly to
the timings presented in Table II, 77.8ms±38.2ms were on
average required to perform a localization step. This shows
that the incremental approach effectively managed the higher
number of voxels created at each step (5.2k vs 2.1k on
average) which is caused by the delay when sequentially
processing data from multiple sensors.

V. CONCLUSION

In this work, we presented a novel incremental approach for
performing localization in 3D point clouds. We started by
identifying the most computationally demanding operations
in our previous pipeline. Then, efficient solutions were
proposed for the individual sub-problems of the underlying
segment extraction and matching technique. Unlike previous
works, this approach maintains a segmented local map and
performs geometry verification incrementally, reducing the
computational burden and then allowing for more frequent

localizations. The speed-up achieved allows for localizations
at 10Hz, enabling real–time operation of 3D point cloud
based SLAM systems. Our results indicate that the pro-
posed approach could allow for seamlessly performing map-
tracking, i.e. localization in a known map with a constrained
search space based on the current position estimate. In
the same direction it is worth to further investigate the
application of our incremental recognition scheme to ge-
ometric verification for vision-based SLAM. Furthermore,
whereas the present work considered eigen-based segment
descriptors, it would be interesting to investigate incremental
updates of learning-based descriptors that can potentially
gain discriminative power and reliability over time.
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