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Where Should I Walk?
Predicting Terrain Properties from Images via

Self-Supervised Learning
Lorenz Wellhausen1, Alexey Dosovitskiy2, René Ranftl2, Krzysztof Walas3, Cesar Cadena4, and Marco Hutter1

Abstract—Legged robots have the potential to traverse diverse
and rugged terrain. To find a safe and efficient navigation path
and to carefully select individual footholds, it is useful to be
able to predict properties of the terrain ahead of the robot.
In this work, we propose a method to collect data from robot-
terrain interaction and associate it to images. Using sparse data
acquired in teleoperation experiments with a quadrupedal robot,
we train a neural network to generate a dense prediction of the
terrain properties in front of the robot. To generate training
data, we project the foothold positions from the robot trajectory
into on-board camera images. We then attach labels to these
footholds by identifying the dominant features of the force-torque
signal measured with sensorized feet. We show that data collected
in this fashion can be used to train a convolutional network
for terrain property prediction as well as weakly supervised
semantic segmentation. Finally, we show that the predicted
terrain properties can be used for autonomous navigation of the
ANYmal quadruped robot.

Index Terms—Semantic Scene Understanding; Visual-Based
Navigation; Visual Learning

I. INTRODUCTION

ROBOT navigation through natural environments poses
numerous challenges not present in indoor and other

man-made environments. Perceived terrain geometry cannot
be assumed to be rigid without severely restricting operational
capabilities, for instance in the presence of vegetation. Even
flat ground might not be negotiable without the risk of failure
in the presence of bodies of water, sand and other challenging
terrain types. Moreover, terrain properties change depending
on the environmental conditions such as precipitation (e.g.
dry vs. wet sand) and temperature (e.g. water vs. ice). Be-
cause these properties typically cannot be directly measured
remotely, they need to be estimated from sensor streams in
order to enable safe and efficient navigation and individual
foothold selection.

Previous methods largely focus on purely geometric en-
vironment models for traversability estimation [1], [2], [3].
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Fig. 1: Robot footholds are projected into camera images to auto-
matically obtain label values. They are used to train a convolutional
network to predict dense terrain properties from images.

Unfortunately, information provided by these approaches is
not sufficiently detailed to support effective locomotion in
complex natural environments. To overcome these limitations,
terrain classification is widely employed for more detailed
terrain perception [4], [5]. However, these methods are typ-
ically limited to a manually pre-defined fixed set of terrains
and usually do not account for intra-class property variations.
Additionally, ground interaction dynamics depend on robot
morphology and locomotion mode and are difficult to impos-
sible to obtain via hand-annotation, without terrain interaction.

A. Contribution

In this paper, we take a step towards fully automated
self-supervised learning and prediction of navigation-relevant
terrain properties. We approach the problem by associating
terrain information obtained from robot operation with camera
images. To this end, we project robot footholds to the camera
frame. To obtain image labels associated with the footholds,
we estimate the terrain properties automatically and without
any human intervention, by measuring the interaction during
locomotion using sensorized feet.

We deploy and test the proposed system on the ANYmal
quadruped [6]. Based on recordings of terrain interaction, we
derive a ground reaction score, which serves as a measure
for the difficulty of terrain negotiation. To accurately regress
this score from images, we then train a convolutional network
(CNN). Moreover, we show that semantic terrain segmentation
labels for over 70, 000 images can be obtained with less
than an hour of manual work and can be used to train an
accurate segmentation model. Finally, navigation trials that use
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a 2D map of the local ground reaction score as a basis for
path planning, exhibit intuitive navigation behavior without
manually specifying preferred terrain types.

To summarize, our main contributions in this work are:

1) An automated system for pixel-accurate image annota-
tion using foothold positions and proprioceptive sensor
readings.

2) Definition of ground reaction score as a metric of terrain
negotiation difficulty.

3) Adaptation of a CNN to facilitate learning on sparse and
noisy labels.

4) Experimental verification of terrain property prediction
for robot navigation.

B. Related Work

Traditional path planning approaches for mobile robots use
a geometric representation of the environment, like 2D height-
maps [1], [2], point clouds [3], and signed distance fields [7].
They show good performance in environments with rigid
terrain and obstacles, but do not capture deformable obstacles
and non-rigid surfaces. This is not sufficient for ground robots,
which by definition interact with the ground and need to exert
forces onto the environment to move forward. For semantic-
aware navigation, additional and richer sensor streams like
grayscale [4], RGB [8], [5], [9], [10], [11], NIR [12], [5] and
thermal cameras [13] as well as RADAR [14] have been used.

The approach based on thermal inertia [13] requires ob-
servation of terrain over longer periods and is difficult to
apply in use-cases other than space exploration, while mod-
ern RADARs are typically bulky and heavy and exceed the
payload capacity of our target platform. Most camera-based
approaches either classify different terrain types and then
attach a value to every class [4], [5], [9], [12] or directly
predict a manually defined traversability value [8], [10], [11].
Approaches based on classifying the terrain can reach im-
pressive performance in navigating natural terrain [5], but are
limited by the necessity to specify explicit terrain classes.
Additionally, human experts who define the segmentation
might be unaware of the actual interaction dynamics with
the environment. This can be sufficient for use-cases with
constant and known environmental conditions [4], [9], but does
not scale for varying weather and terrain conditions. If for
example sand is given as a terrain class, its properties can vary
strongly depending on factors like humidity and compression,
necessitating the creation of sub-classes.

Weakly and self-supervised learning has increasingly been
investigated to obtain scalable navigation solutions, obtain-
ing training data from additional sensors [9], [10] or robot
state [8], [11]. Current methods learn either traversability or
terrain class, but do not estimate terrain properties directly. Of
these works only Barnes et al. [10] make dense, pixel-wise
predictions.

Terrain identification via haptic interaction is an active area
of research. Automatic class discovery has been achieved via
clustering of terrain on a full legged system while walk-
ing [15]. Estimating physical ground properties has, to the

best of our knowledge, only been demonstrated on a single-
leg test bench [16] and on full legged systems using an active
probing motion [17], [18], but not during locomotion.

Inspired by the aforementioned works, our approach aims
to take terrain property prediction a step further. We identify
terrain properties from haptic interaction during locomotion
and associate them with images to facilitate self-supervised
learning of dense pixel-accurate prediction of terrain properties
from RGB images.

II. APPROACH

The developed framework for self-supervised terrain prop-
erty learning is illustrated in Figure 2. It comprises three
main components: The foothold projection module maps the
foothold positions to the camera plane. The labeling module
provides a label for each foothold. The prediction module,
implemented by a CNN, is trained to estimate the labels from
RGB images.

A. Foothold Projection

To be able to project the 3D positions of footholds into
camera images, we need to compute the positions of robot
foot contact closures and the camera trajectory in a common
coordinate frame. For tracking the camera pose we use a visual
SLAM system ORB-SLAM2 [19]. Thanks to loop closure
detection, it enables accurate camera pose tracking even on
long trajectories. In our experiments we provided RGB-D
input to the SLAM system to ensure robustness and precision,
although we have found RGB-only SLAM to work well too.

We now consider a legged robot with point-feet, but the
proposed technique would also apply to other ground robots.
For each contact point, we project a circle centered at this
point to all camera views. To this end, we first compute the
positions of the contact point and two points on the circle
circumference relative to the current camera view, using joint-
encoder angles, robot kinematics, and an estimate of the
ground plane based on the recent contact points. We then
project these three points to each of the other camera views
and use them to draw an ellipse in each. We neglect possible
occlusions of foothold positions caused by vertical geometry.
In future work, occluded footholds could be filtered out using
a 3D reconstruction of the terrain. Specifically, we obtain the
coordinates xi,t

� of the three points projected from foothold i
to frame t as follows:[

xi,t
c xi,t

1 xi,t
2

]
= K �Tt

CW �
[
pi
c pi

1 pi
2

]
. (1)

Here pi
c, pi

1, and pi
2 are the center and the two circumference

points of foothold i, expressed in the fixed global coordinate
frame of the SLAM system. K is the intrinsic camera cal-
ibration matrix and Tt

CW is the transformation matrix from
the global coordinates into the camera-fixed frame at time t.
By computing xi,t

� for every foothold i 2 [1, N ] and every
image t 2 [1, T ], we label all recorded images while taking
into account the entire robot trajectory.
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Fig. 2: Self-supervised terrain property learning pipeline. Foothold positions are projected into images using information about the robot
camera trajectory and fused with label values generated from foot-mounted force-torque sensors. The resulting labels are used to train a
convolutional network to predict terrain properties from camera images.

B. Label Generation
We have experimented with two ways of generating the

labels for footholds. The first one allows to learn semantic
terrain segmentation with weak human-provided annotation.
The second one derives the labels fully automatically from
proprioceptive robot measurements and allows to predict a
learned terrain property that we call ground reaction score.
We now describe both in detail.

1) Weakly Supervised Semantic Segmentation: Our
foothold projection system allows to annotate semantic
classes in the image simply by assigning a semantic label
to each time step in the sequence. A human annotator only
needs to replay the recorded image stream and mark each
transition between terrain types with a time stamp and a
terrain type. Given this weak annotation, the terrain class
labels are attached to every recorded robot state and the
corresponding foothold positions in the time interval between
terrain transitions. Since in practice transitions between
terrains are relatively rare (on average every 86 seconds in
our recordings), annotation of a video can be performed
with very low effort. Examples of resulting annotated frames
are shown in Figure 3a and in the supplementary video.
The labels are sparse and may not be perfectly aligned with
terrain transitions, but in what follows we show that it is
still possible to learn a well-performing terrain segmentation
system from these.

2) Self-Supervised Ground Reaction Score Regression:
While weakly supervised manual annotation can allow for
good segmentation results, it comes with downsides: the need
for manual effort, the introduced ambiguity of labels on
regions of terrain transitions, and the lack of actual terrain
characteristics associated with the human-annotated classes.
Measures derived from the internal state of the robot, e.g. cost-
of-transport (CoT), are difficult to accurately associate with a
single foothold, which leads to inaccurate labels along terrain

(a) Terrain Class (b) Ground Reaction Score

Fig. 3: Labels of both types overlayed onto the input image. Color
code is explained in Figure 6. Note how ground reaction score
annotation is better aligned with the terrain borders.

borders, similar to what we experienced with terrain class
labels (see Figure 3a). As discussed in Section I-B, measuring
physical properties during locomotion is currently not feasible.
For this reason, we define an empirical terrain property, which
we can measure while walking. To this end, we recorded data
from six-axis force-torque (F/T) sensors mounted on the robot
feet which perform the terrain interaction. This provides a time
series of measurements for each leg of the robot. In order to
use these for labeling, we need to extract low-dimensional
navigation-relevant values from the raw measurement stream.

We start by segmenting the signal of every stance phase,
including touch-down and lift-off, into segments of equal
length. To each of these segments we apply the continuous
wavelet transform using the Morse wavelet. This generates a
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13860-dimensional feature vector, similar to that used by [20].
Because of asymmetries introduced by imperfections in the
calibration of the robot limbs, we treat the signal of every
leg’s sensor separately. Similarly, since the ground reaction
forces while walking forward show different features than
while walking backwards, we separate stance phase samples
based on the longitudinal body velocity sign to account for
this. We end up with eight sets of feature vectors: two per leg,
split by the longitudinal direction of motion. Treating these
signals separately is crucial to isolate and identify the effects
of the terrain on the ground reaction forces.

We now aim to extract from this high-dimensional vector
a low-dimensional physically meaningful value. On each of 8
subsets we perform principal component analysis (PCA) and
rescale the principal components to have zero-mean and unit
variance. We find that the first principal component of every
set explains on average 37.5% of the signal variance. We select
this first principal component as a measure of the terrain prop-
erties, refer to it as “ground reaction score” in what follows,
and learn to regress it per-pixel from images. By construction,
this score summarizes a variety of terrain properties relevant
for generating ground reaction forces during the stance phase,
however there is no guarantee that is strictly measuring any
physical value. We confirmed in our experiments that this
ground reaction score encodes terrain properties relevant for
navigation and thus it can be used for trajectory planning.

C. Network Training

Our network architecture is based on ERFNet [21], which
achieves good performance in semantic segmentation while
running in real time on mobile computational hardware. The
network architecture is illustrated in Figure 4. Compared to
the original ERFNet, we change the number of output layers
to match the number of classes in our classification task or our
regression task, respectively. Additionally, we introduce skip
connections between intermediate decoder and encoder layers,
to improve performance along terrain transitions, by adding
two skip connection blocks in the decoder. In a skip connection
block the tensors from encoder and decoder are concatenated,
one 1D-non-bottleneck layer [21] is applied, followed by a
convolution for dimensionality reduction.

For the classification task, we employ the standard cross-
entropy loss function, only applied where labels are available.
For the regression task, we predict both the mean mi of the
ground reaction score as well as its variance σi for each pixel
i and employ a negative Gaussian log-likelihood loss [22],
averaged over valid pixels i 2 V for which ground truth mgt

i

is available:

L =
∑
i2V

(mi �mgt
i )2

2σ2
i

+ log σi . (2)

The image labels obtained through foothold projection are
sparse and cover between 0.1% and 10.9% of image pixels.
Moreover, these labels are concentrated around the center and
bottom of images, owing to the mostly longitudinal motion of
the robot and the parallax effect. Due to the limited receptive
field of every pixel, this leads to left, right, and top areas of

Skip Connection

Skip Connection

128 Ch.64 Ch.16 Ch. 64 Ch. 16 Ch. N Ch.

48
0

64
0

Fig. 4: Network architecture based on ERFNet [21]. Grey blocks
are identical to the original architecture, yellow-colored blocks were
added to facilitate skip connections.

the images having very small gradients. In order to alleviate
this issue, we employ a semi-supervised learning technique
called Mean Teacher [23]. We maintain two copies of the
network and feed the same image to both, albeit with different
image augmentations, and then enforce the output of both to
be identical using an L2 loss. This way we obtain a training
response for all parts of the image, including the unlabeled
regions.

III. EXPERIMENTS

The proposed framework was extensively tested in various
field experiments using the ANYmal quadruped robot [6]. We
evaluate the terrain property prediction and demonstrate its use
for path planning.

A. Dataset

We generated a dataset by teleoperating the robot through
different environments. To minimize the effect of the locomo-
tion controller, we used the same trotting gait at all times. We
recorded the data in an urban park, forest, and on farmland,
under varying lighting and weather conditions. The dataset
includes multiple terrain types, which are shown in Figure 5
and further explained in Section III-C. The robot is equipped
with four BOTA Rokubi Mini 1.00 USB [24] six-axis F/T
sensors, one mounted on each foot. Image data was recorded
using a forward-facing Intel Realsense ZR300 mounted at a
pitch angle of 22.3�. The position of the feet relative to the
camera was measures using joint encoders at 400Hz. The total
dataset length is 167 minutes with F/T data recorded at 100Hz
and image data recorded at 10Hz at a resolution of 640�480.
Out of 23 total robot sorties, we selected 4 as a validation set,
while taking care that all terrain types are present in both
the training and the validation set and that the same piece
of terrain is not present in both. This results in the training
set containing 70 822 images and the validation set containing
15 134 images. We test our approach in real robot navigation
experiments.

B. Training Details

Since images are recorded from a camera stream at 10Hz
on a platform with a speed around 0.3m

s , they are highly
correlated in time. We therefore sample every tenth image for
training to reduce the dataset size.
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(a) (b) (c) (d)

Fig. 5: Example images of different terrain types in the dataset. Asphalt (a), gravel path and grass (b), dirt (c), sand (d)

To improve the generalization performance, we perform
image augmentation on the input images. As mentioned in
Section II-C, we employ the Mean Teacher learning strat-
egy [23] where two input images with different augmentations
are fed to the network and deviations between the outputs are
punished. The following geometric augmentations are applied
to both input images with the same parameters so that the
assumption that outputs should be identical still holds:
� Horizontal flip with probability 0.5
� Random rotation uniformly sampled from [�5�, 5�]
� Random crop to image scale uniformly sampled from

[0.6, 1.0]

After applying the geometric augmentation to both input im-
ages we apply individually sampled color jitter in brightness,
contrast, saturation and hue to the images.

C. Weakly Supervised Semantic Segmentation

We consider five terrain types in the classification task:
asphalt, gravel path (hereafter referred to as path), grass,
dirt, and sand. Example images of all terrains are shown in
Figure 5. Note that some of the terrains look very similar in the
relatively low-quality images recorded by the robot’s camera,
and cannot be discriminated with naive approaches, such as
color thresholding. Training labels are generated by replaying
the recorded dataset and manually noting the time stamps of
transitions between terrains, as described in Section II-B. With
this approach, we were able to label the entire dataset in under
one hour.

We select the ERFNet model with skip connections trained
using the Mean teacher approach, based on the performance on
the regression task, which will be discussed in the next section.
We evaluate it by computing the per-class classification accu-
racy for each class and the mean per-class accuracy, which is
the average of these per-class accuracies. The results, evaluated
on the validation set, are shown in Table I. Mean per-class
accuracy is 90.6%, indicating the overall high performance of
the system, especially given the very sparse labels provided
for training. Lower accuracy on the softer terrain types – sand
and dirt – is caused by the fact that these terrain types are
rare and therefore underrepresented in the dataset. A larger
training dataset or re-weighting the loss for underrepresented
classes would likely lead to higher accuracy.

Qualitative results of semantic terrain segmentation are
shown in Figures 6b and 6c. We show the predicted class and
the confidence, measured by the probability assigned by the
network to the dominant class. The overall prediction quality
is high, but the predictions are noisy around borders between

different terrain types. This is because of the relatively small
size of the dataset and the noise in the human-annotated terrain
transition timestamps. Confusion between asphalt and path
terrain types is captured by low confidence, visible for instance
in the center image of Figure 6c.

TABLE I: Terrain classification accuracy.

asphalt path grass dirt sand Mean

93.1% 97.0% 97.3% 85.2% 80.3% 90.6%

D. Self-Supervised Ground Reaction Score Regression

We have obtained the ground reaction score on the collected
dataset as described in Section II-B2. To gain an understanding
of the physical meaning of the ground reaction score, we
plot the first two principal components of the terrain response
in Figure 7a (left) and color each point according to its
terrain class, as in Section III-C. There is a clear correlation
between the terrain type and the ground reaction score (the first
principal component), while the second principal component
does not appear to have a correlation with the terrain type. This
is further reinforced by Figure 7a (right) that demonstrates
a quantitative difference in ground reaction score between
different terrain types: there is a clear progression of per-
terrain values, and the means are well separated in most cases.
Both the mean and the variance increase with the rigidity of
the terrain. A possible explanation for the increasing variance
is that on hard terrain, high end-effector speeds at touchdown
induce a higher peak reaction force than on soft terrain, where
the impact is dampened. At lower impact speeds damping has
less influence which would explain the relative proximity of
ground reaction score of hard and soft terrain on the lower
end. It is important to note that we only use the terrain
types in Figure 7a to illustrate that the ground reaction score
contains meaningful information about terrain properties, but it
is learned in fully self-supervised fashion. The ground reaction
score correlates with both the CoT, shown in Figure 7b, as
well as the maximum z-velocity during stance phase, shown
in Figure 7c. This indicates that we can use it to derive a
planning cost, which encapsulates energy-efficiency as well
as expected locomotion disturbances.

Qualitative results of ground reaction score prediction are
shown in Figures 6d and 6e. Terrain boundaries are noticeably
sharper than for the classification task and gradual terrain
transitions are perceived as such. We believe this is thanks
to the better alignment of the automatically annotated labels
with the terrain transitions.
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(a) Input (b) Terrain Class (c) Class Confidence (d) GRS Mean (e) GRS Confidence

Fig. 6: Representative qualitative prediction results of weakly supervised semantic segmentation and self-supervised ground reaction score
(GRS) regression. Class color code: asphalt - gray, path - red, grass - green, dirt - brown, sand - yellow. Ground reaction score color code:
low - red, high - green. Confidence color code: low - black, high - white.

For a quantitative evaluation, we measure the effect of net-
work modifications – skip connections and Mean Teacher – on
the prediction quality. Figure 8 shows validation curves on the
regression task. Both modifications improve the performance
of the network in terms of final loss value and the stability of
training.

E. Hardware Path Planning Experiments

Finally, we verify the applicability of our approach to robot
navigation tasks and compare it to a geometric navigation
approach [1].

1) Experimental Setup: Experiments were performed on
the quadrupedal robot ANYmal. A Nvidia Jetson TX2 was
used for inference of the neural network, running the ERFNet
+ skip connection regression network at 6.0Hz. The planning
algorithm was run on a PC equipped with a Intel i7-4600U
CPU. One experiments was performed in a park with asphalt
paths, grass, and sand pits, while another was performed on a
forest path. The former is in the same general environment
used for data collection while the latter is different from
both training and validation locations. The experiments where
conducted during late fall in gloomy lighting conditions, dif-

ferent from the sunny and overcast weather during initial data
collection in spring. The terrain is flat, allowing us to focus
on the terrain properties rather than geometric characteristics.

2) Path Planning: Path planning is performed on a 2D grid
with a cell size of 10cm which is updated continuously. Its size
is expanded automatically if measurements fall outside of the
grid while keeping the same resolution. Every cell maintains
an estimate of its ground reaction score mean and uncertainty.
Ground reaction score prediction images are projected into 3D
space using depth information from the depth camera and the
pose estimate of the robot odometry. Depth values are clipped
at 7m due to decreasing depth accuracy of the sensor. For every
projected pixel a Kalman filter update step is performed in the
cell it is projected into. The ground reaction score prediction
is used as measured value, the uncertainty prediction is used
as measurement variance. A process noise of 0.001

Hz is applied
to account for robot state estimation drift.

Motivated by Figure 7b, the negative ground reaction score
is used as cost, rescaled such that all costs are positive, and
the Dijkstra’s algorithm is used to find the optimal path.
Unobserved grid regions have a medium cost which falls
between empirically observed costs of grass and sand. We do
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not set a lethal cost because we can, by the nature of our data
collection method, traverse any terrain we predict a ground
reaction score for. The path is continuously replanned at 1Hz

We compare our path planner to the work of Wermelinger
et al. [1], which computes a geometric traversability measure.
Traversability is computed as the weighted average of terrain
slope, step height and terrain variance in a local patch. The
same 2D grid as for our approach with the same 10cm
resolution is used.

3) Results: In the first task the robot had to successively
navigate from one goal point to the next. After a goal point
was reached, the robot was turned towards the next goal
point, before resuming navigation, such that it is visible to the
forward-facing RGB-D camera. The robot preferred asphalt
over grass and avoided entering the sand pit, unless the goal
point required it to (Points 4, 5, 6, 9), as shown in Figure 9
(left). Interestingly, in these cases, the planner does not strictly
minimize the path length in sand but finds a trade-off between
total path length and path length in sand. A notable behavior
is also the slight detour over asphalt between points 7 and 8
instead of walking directly over grass.

The geometric planner plans direct paths from start to goal

positions, as show in Figure 9 (right). Minor steps on the
border of the sand pit are the only perceived obstacle but are
rightfully judged as traversable. Terrain height variance of the
sand and short grass is not perceived at the grid size of 10cm.
While the robot is able to follow every path planned by the
geometric planner due to its advanced mobility, it is typically
less safe than to follow the path along asphalt planned by
our approach, due to the higher risk of failure on sand. These
results qualitatively demonstrate that our approach, to learn
ground reaction properties via experience of robot locomotion,
enables navigation where geometric planners fail, without the
need to specify arbitrary terrain classes.

In the second navigation task, the robot was set on a curvy
gravel path, in a location completely different from where the
training set was recorded, bordered by a grassy field on one
side and a forest on the other, pictured in Figure 10. The
goal position was commanded 10m in front of the robot and
continuously updated to stay at this relative position. When
the robot approaches a bend, the commanded pose falls on
grass, but the optimal path towards it lies on the lower cost
gravel path along the grass border. When the robot starts to
turn to follow the path, the next goal position lies closer to the
gravel than the previous one, leading the robot to eventually
completing the turn. This experiment demonstrates emerging
path following behavior without having an explicit notion of
what a path is.

IV. CONCLUSION

In this work we proposed an approach for weakly super-
vised and self-supervised learning of terrain properties and
have shown its value for prediction of terrain characteristics
from RGB images which is used for robot navigation. The
proposed approach opens up multiple avenues for future work.
First, advanced weakly supervised learning methods could be
employed to better deal with sparse image annotation provided
by our labeling technique. Second, analyzing the proposed
ground reaction score in detail and examining which exact
terrain properties are encoded in this metric could give more
insight into robot-terrain interaction during locomotion. More-
over, if other properties are derived from the F/T readings,
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successive path segments. Our approach, using the negative ground reaction score as cost (left) avoids sand whenever possible, whereas the
geometric approach by Wermelinger [1] (right) plans a direct path.

Start Planned PathsExecuted Path

Fig. 10: Continuously commanded goal position 10m in front of the
robot results in path following behavior. Cost map on top and aerial
view on bottom.

they can be readily incorporated in the proposed framework.
Third, extending foothold projection with depth information
to respect occlusions and environment geometry could enable
applications for beyond line-of-sight navigation and predicting
traversable geometry, like vegetation. Fourth, employing safe
exploration techniques for data collection could absolve the
need for any human input to the system. Finally, while this
work demonstrated the application of the approach to a legged
robot, it could be generalized to other types of ground robots.
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