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Volumetric Instance-Aware Semantic Mapping and
3D Object Discovery
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Abstract—To autonomously navigate and plan interactions in
real-world environments, robots require the ability to robustly
perceive and map complex, unstructured surrounding scenes.
Besides building an internal representation of the observed scene
geometry, the key insight towards a truly functional under-
standing of the environment is the usage of higher-level entities
during mapping, such as individual object instances. This work
presents an approach to incrementally build volumetric object-
centric maps during online scanning with a localized RGB-D
camera. First, a per-frame segmentation scheme combines an
unsupervised geometric approach with instance-aware semantic
predictions to detect both recognized scene elements as well as
previously unseen objects. Next, a data association step tracks
the predicted instances across the different frames. Finally,
a map integration strategy fuses information about their 3D
shape, location, and, if available, semantic class into a global
volume. Evaluation on a publicly available dataset shows that the
proposed approach for building instance-level semantic maps is
competitive with state-of-the-art methods, while additionally able
to discover objects of unseen categories. The system is further
evaluated within a real-world robotic mapping setup, for which
qualitative results highlight the online nature of the method. Code
is available at https://github.com/ethz-asl/voxblox-plusplus,

Index Terms—RGB-D Perception; Object Detection, Segmen-
tation and Categorization; Mapping

I. INTRODUCTION

OBOTS operating autonomously in unstructured, real-

world environments cannot rely on a detailed a priori
map of their surroundings for planning interactions with
scene elements. They must therefore be able to robustly
perceive the complex surrounding space and acquire task-
relevant knowledge to guide subsequent actions. Specifically,
to learn accurate 3D object models for tasks such as grasping
and manipulation, a robotic vision system should be able
to discover, segment, track, and reconstruct objects at the
level of the individual instances. However, real-world sce-
narios exhibit large variability in object appearance, shape,
placement, and location, posing a direct challenge to robotic
perception. Further, such settings are usually characterized by
open-set conditions, i.e. the robot will inevitably encounter
novel objects of previously unseen categories.
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Fig. 1: Reconstruction and object-level segmentation of an office scene using
the proposed approach. Besides accurately describing the observed surface
geometry, the final object-centric map in Figure@carries information about
the location and 3D shape of the individual object instances in the scene.
As opposed to a geometry-only segmentation from our previous work
shown in Figure the proposed framework prevents over-segmentation of
recognized articulated objects and segments them as one instance despite
their non-convex shape (blue circle), assigning each a semantic category
shown in Figure At the same time, the proposed approach discovers
novel, previously unseen object-like elements of unknown class (red circle).
Note that different colors in Figure [(@)] and Figure [(b)] represent the different
instances, and that a same instance in the prediction and ground truth is not
necessarily of the same color. Progressive mapping of sequence 231 from
the SceneNN dataset is shown in the accompanying video available at
http://youtu.be/Jvl42VImYxg.

Computer vision algorithms have shown impressive results
for the tasks of detecting individual objects in RGB images
and predicting for each a per-pixel semantically annotated
mask [[I]l, [2]. On the other hand, dense 3D scene reconstruc-
tion has been extensively studied by the robotics community.
Combining the two areas of research, a number of works
successfully locate and segment semantically meaningful ob-
jects in reconstructed scenes while dealing with substantial
intra-class variability [3]-[6]. Still, these methods can only
detect objects from a fixed set of classes used during training,
thus limiting interaction planning to a subset of the observed
elements. In contrast, purely geometry-based methods [7]], [9]
are able to discover novel, previously unseen scene elements,
under open-set conditions. However, such approaches tend to
over-segment the reconstructed objects and additionally fail to
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provide any semantic information about them, making high-
level scene understanding and task planning impractical.

This paper presents an approach to incrementally build ge-
ometrically accurate volumetric maps of the environment that
additionally contain information about the individual object
instances observed in the scene. In particular, the proposed
object-oriented mapping framework retrieves the pose and
shape of recognized semantic objects, as well as of newly
discovered, previously unobserved object-like instances. The
proposed system builds on top of the incremental geometry-
based scene segmentation approach from our previous work
in [7] and extends it to produce a complete instance-aware
semantic mapping framework. Figure [T] shows the sample
object-centric map of an office scene reconstructed with the
proposed approach.

The system takes as input the RGB-D stream of a depth
camera with known poseﬂ First, a frame-wise segmentation
scheme combines an unsupervised geometric segmentation
of depth images [9] with semantic object predictions from
RGB [1]. The use of semantics allows the system to infer the
category of some of the 3D segments predicted in a frame, as
well as to group segments by the object instance to which
they belong. Next, the tracking of the individual predicted
instances across multiple frames is addressed by matching per-
frame predictions to existing segments in the global map via
a data association strategy. Finally, observed surface geometry
and segmentation information are integrated into a global
Truncated Signed Distance Field (TSDF) map volume. To
this end, the Voxblox volumetric mapping framework [10]
is extended to enable the incremental fusion of class and
instance information within the reconstruction. By relying on
a volumetric representation that explicitly models free space
information, i.e. distinguishes between unknown space and
observed, empty space, the built maps can be directly used
for safe robotic navigation and motion planning purposes.
Furthermore, object models reconstructed with the voxel grid
explicitly encode surface connectivity information, relevant in
the context of robotic manipulation applications.

The capabilities of the proposed method are demonstrated in
two experimental settings. First, the proposed instance-aware
semantic mapping framework is evaluated on office sequences
from the real-world SceneNN [8] dataset to compare against
previous work on progressive instance segmentation of 3D
scenes. Lastly, we show qualitative results for an online
mapping scenario on a robotic platform. The experiments high-
light the robustness of the presented incremental segmentation
strategy, and the online nature of the framework.

The main contributions of this work are:

e« A combined geometric-semantic segmentation scheme
that extends object detection to novel, previously unseen
categories.

o A data association strategy for tracking and matching
instance predictions across multiple frames.

o Evaluation of the framework on a publicly available
dataset and within an online robotic mapping setup.

! Please note that the current work focuses entirely on mapping, hence
localization of the camera is assumed to be given.

II. RELATED WORK
A. Object detection and segmentation

In the context of object recognition in real-world envi-
ronments, computer vision algorithms have recently shown
some impressive results. Driven by the advances in deep
learning using Convolutional Neural Network (CNNs), several
architectures have been proposed for detecting objects in RGB
images [11]], [12]. Beyond simple bounding boxes, the recent
Mask R-CNN framework [1] is further able to predict a per-
pixel semantically annotated mask for each of the detected
instances, achieving state-of-the-art results on the COCO
instance-level semantic segmentation task [[13]].

One of the major limitations of learning-based instance
segmentation methods is that they require extensive amounts of
training data in the form of annotated masks for the specified
object categories. Such annotated data can be expensive or
even infeasible to acquire for all possible categories that
may be encountered in a real-world scenario. Moreover, these
algorithms can only recognize the fixed set of classes provided
during training, thus failing to correctly segment and classify
other, previously unseen object categories.

Some recent works aim to relax the requirement for large
amounts of pixel-wise semantically annotated training data.
Mask™ R-CNN [14] adopts a transfer method which only
requires a subset of the data to be labeled at training time.
SceneCut [|15] and its Bayesian extension in [2] also operate
under open-set conditions and are able to detect and segment
novel objects of unknown classes. However, beyond detecting
object instances in individual image frames, these methods
alone do not provide a comprehensive 3D representation of
the scene and, therefore, cannot be directly used for planning
tasks such as manipulation or navigation.

B. Semantic object-level mapping

Recent developments in deep learning have also enabled
the integration of rich semantic information within real-time
Simultaneous Localization and Mapping (SLAM) systems.
The work in [[16] fuses semantic predictions from a CNN into
a dense map built with a SLAM framework. However, conven-
tional semantic segmentation is unaware of object instances,
i.e. it does not disambiguate between individual instances that
belong to the same category. Thus, the approach in [16] does
not provide any information about the geometry and relative
placement of individual objects in the scene. Similar work in
[17] additionally proposes to incrementally segment the scene
using geometric cues from depth. However, geometry-based
approaches tend over-segment articulated scene elements.
Thus, without instance-level information, a joint semantic-
geometric segmentation is not enough to group parts of the
scene into distinct separate objects. Indeed, the instance-
agnostic semantic segmentation in these works fails to build
semantically meaningful maps to model individual object
instances.

Previous work has addressed the task of mapping at the level
of individual objects. SLAM++ [18] builds object-oriented
maps by detecting recognized elements in RGB-D data, but
is limited to work with a database of objects for which exact
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geometric models need to be known in advance. A number
of other works have addressed the task of detecting and
segmenting individual semantically meaningful objects in 3D
scenes without predefined shape templates [3[]-[7], [9]. Recent
learning-based approaches segment individual instances of se-
mantically annotated objects in reconstructed scenes with little
or no prior information about their exact appearance while at
the same time handling substantial intra-class variability [3]]-
[6]. However, by relying on a strong supervisory signal of
the predefined classes during training, a purely learning-based
segmentation fails to discover novel objects of unknown class
in the scene. As a result, these methods either fail to map
objects that do not belong to the set of known categories and
for which no semantic labels are predicted [3[, [4f], [6], or
wrongly assign such previously unseen instances to one of the
known classes [3]]. In a real-world scenario, detecting objects
only from a fixed set of classes specified during training limits
interaction planning to a subset of all the observed scene
elements.

In contrast, purely geometry-based methods operate under
open-set conditions and are able to discover novel, previously
unobserved objects in the scene [7]], [9)]. The work in [9]]
provides a complete and exhaustive geometric segmentation of
the scene. Similarly, the Incremental Object Database (I0DB)
in [7]] performs a purely geometric segmentation from depth
data to reconstruct the shape of individual segments and build
a consistent database of unique 3D object models. However,
as mentioned previously, geometry-based approaches can re-
sult in unwanted over-segmentation of non-convex objects.
Furthermore, by not providing semantic information, the two
methods disallow high-level interaction planning. In addition
to a complete geometric segmentation of the scene, the work
in [19] performs object recognition on such segments from
a database of known objects. While able to discover new,
previously unseen objects and to provide for some semantic
information, the main drawback lies in the requirement for
exact 3D geometric models of the recognized objects to be
known. This is not applicable to real-world environments,
where objects with novel shape variations are inevitably en-
countered on a regular basis.

Closely related to the approach presented in this paper is
the recent work in [20], with the similar aim of building
dense object-oriented semantic maps. The work presents an
incremental geometry-based segmentation strategy, coupled
with the YOLO v2 [11] bounding box detector to identify
and merge geometric segments that are detected as part of the
same instance. One of the key differences to our approach is
the choice of scene representation. Their system relies on the
RGB-D SLAM system from [21] and stores the reconstructed
3D map through a surfel-based representation [22]. While
surfels allow for efficient handling of loop closures, they only
store the surface of the environment and do not explicitly
represent observed free space [23]]. That is, a surfel map does
not distinguish between unseen and seen-but-empty space,
and thus cannot be directly used for planning in robotic
navigation or manipulation tasks where knowledge about free
space is essential for safe operation [24]. Further, visibility
determination and collision detection in surfel clouds can be

significantly harder due to the lack of surface connectivity
information. Therefore, as with all other approaches relying
on sparse point or surfel clouds representations [3[], [4], the
object-oriented maps built in [20] cannot be immediately used
in those robotic settings where an explicit distinction between
unobserved space and free space is required.

Conversely, the volumetric TSDF-based representation
adopted in this work does not discard valuable free space
information and explicitly distinguishes observed empty space
from unknown space in the 3D map. In contrast to all previous
approaches, the proposed method is able to incrementally
provide densely reconstructed volumetric maps of the envi-
ronment that contain shape and pose information about both
recognized and unknown object elements in the scene. The
reconstructed maps are expected to directly benefit navigation
and interaction planning applications.

III. METHOD

The proposed incremental object-level mapping approach
consists of four steps deployed at each incoming RGB-D
frame: (i) geometric segmentation, (ii) semantic instance-
aware segmentation refinement, (iii) data association, and
(iv) map integration. First, the incoming depth map is seg-
mented according to a convexity-based geometric approach
that yields segment contours which accurately describe real-
world physical boundaries (Section [[II-A). The corresponding
RGB frame is processed with the Mask R-CNN framework
to detect object instances and compute for each a per-pixel
semantically annotated segmentation mask. The per-instance
masks are used to semantically label the corresponding depth
segments and to merge segments detected as belonging to
the same geometrically over-segmented, non-convex object
instance (Section [[II-B). A data association strategy matches
segments discovered in the current frame and their comprising
instances to the ones already stored in the map (Section [[II-C)).
Finally, segments are integrated into the dense 3D map, where
a fusion strategy keeps track of the individual segments dis-
covered in the scene (Section [[II-D). An example illustrating
the individual stages of the proposed approach is shown in

Figure [2]

A. Geometric segmentation

Building on the assumption that real-world objects exhibit
overall convex surface geometries, each incoming depth frame
is decomposed into a set of object-like convex 3D segments
following the geometry-based approach introduced in [7].
First, surface normals are estimated at every depth image
point. Next, angles between adjacent normals are compared
to identify concave region boundaries. Additionally, large 3D
distances between adjacent depth map vertices are used to
detect strong depth discontinuities. Surface convexity and the
3D distance measure are then combined to generate, at every
frame ¢, a set Ry of closed 2D regions rj in the current depth
image and a set Sy of corresponding 3D segments s;. Figure
shows the sample output of this stage.
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Fig. 2: The individual stages of the proposed approach for incremental object-level mapping are illustrated here with an example. At each new frame, the
incoming RGB image is processed with the Mask R-CNN network to detect object instances and predict for each a semantically annotated mask. At the
same time, a geometric segmentation decomposes the depth image into a set of convex 3D segments. The predicted semantic mask is used to infer class
information for the corresponding depth segments and to refine over-segmentation of non-convex objects by grouping segments by the object instance they
belong to. Next, a data association strategy matches segments predicted in the current frame to their corresponding instance in the global map to retrieve for
each a map-consistent label. Finally, dense geometry and segmentation information from the current frame are integrated into the global map volume.

B. Semantic instance-aware segmentation refinement

To complement the unsupervised geometric segmentation
of each depth frame with semantic object instance informa-
tion, the corresponding RGB images are processed with the
Mask R-CNN framework [1]]. The network detects and clas-
sifies individual object instances and predicts a semantically
annotated segmentation mask for each of them. Specifically,
for each input RGB frame the output is a set of object
instances, where the k-th detected instance is characterized
by a binary mask My and an object category cx. Figure 2]
shows the sample output of Mask R-CNN.

The segmentation masks offer a straightforward way to
associate each of the detected instances with one or more
corresponding 3D depth segments sj 2 S;. Pairwise 2D
overlaps pj.x between each r; 2 Rt and each predicted
binary mask My are computed as the number of pixels in
the intersection of rj and My normalized by the area of rj:

j?“' \ M, kj
Pik = . )]
I7i)
For each region rj 2 Ry the highest overlap percentage p;j and
index f; of the corresponding mask My are found as:

Pi = Max pi ()

ki =arg max pixk - 3)

If pi > 7p, the corresponding 3D segment s; is assigned
the object instance label oj = %i and a semantic category
¢i = cp . Multiple segments in St assigned to the same
object instance label o; value indicate an over-segmentation of
non-convex, articulated shapes being refined through semantic
instance information. The unique set of all object instance
labels o;j assigned to segments s;j 2 St in the current frame
is denoted by Oy¢. All segments sj 2 S¢ for which no mask
My in the current frame exhibits enough overlap are assigned
oi = ¢i = 0, denoting a geometric segment for which no
semantic instance information could be predicted.

C. Data association

Because the frame-wise segmentation processes each in-
coming RGB-D image pair independently, it lacks any spatio-
temporal information about corresponding segments and in-
stances across the different frames. Specifically, this means
that it does not provide an association between the set of
predicted segments S¢ and the set of segments Si+j. Further,
segments belonging to the same object instance might be
assigned different o; label values across two consecutive
frames, since these represent mask indices valid only within
the scope of the frame in which such masks were predicted.

A data association step is proposed here to track correspond-
ing geometric segments and predicted object instances across
frames. To this end, we define a set of persistent geometric
labels L and a set of persistent object instance labels O
which remain valid throughout the entire mapping session. In
particular, each sj from the set of segments S stored in the
map is defined by a unique geometric label /j 2 L through
a mapping L(sj) = [j. At each frame we then look for a
mapping L¢(sj) = [j that matches predicted segments s; 2 St
to corresponding segments sj 2 S. Similarly, within the scope
of a frame we seek to define a mapping I¢(0j) = om that
matches object instances oj 2 Oy to persistent instance labels
om 2 O stored in the map.

To track spatial correspondences between segments sj 2 St

identified in the current depth map and the set S of segments
in the global map it is only necessary to consider the set S,
S of map segments visible in the current camera view. The
pairwise 3D overlap j.j is computed for each sj 2 St and
each sj 2 Sy as the number of points in segment s; that, when
projected into the global map frame using the known camera
pose, correspond to a voxel which belongs to segment sj. For
each segment sj 2 Sy, the highest overlap measure j and
the index /z\j of the corresponding segment sj 2 St are found
as,

j=max i €]

% =argmax i . (5)
1
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e | 2

Sequence ID < ~
011 - 75.0 50.0 100 - - - - - 75.0 | 52.1
016 100 0.0 0.0 - - - - - - 333 | 34.2
030 - 544 100 556 143 - - - - 56.1 | 56.8
061 - - 100 333 - - - - - 66.7 | 59.1
078 - 333 - 00 476 100 - - - 45.2 | 349
086 - 80.0 - 0.0 0.0 - - - 0.0 20.0 | 35.0
096 00 875 - 37.5 0.0 - 0.0 - 50 29.2 | 265
206 - 583 100 60.0 - - - - 100 | 79.6 | 41.7
223 - 12.5 - 75.0 - - - - - 43.8 | 409
255 - - - - - 75.0 - - - 75.0 | 48.6

TABLE I: Comparison to the 3D semantic instance-segmentation approach from Pham et al. . Per-class AP is evaluated using an IoU threshold of 0.5 for
each of the 10 evaluated sequences from the SceneNN [g]] dataset. The class-averaged mAP value is compared to the results presented in [5]]. The proposed
approach improves over the baseline for 7 of the 10 sequences evaluated, however it is worth noting that the reported mAP values are evaluated on a smaller

set of classes compared to the ones from .

Each segment sj 2 Sy with  j > 7 determines the persistent
label mapping for the corresponding maximally overlapping
segment sp. 2 S¢ from the current depth frame, i.e. Lt(s/;j) =
L(sj). The 7 threshold value is set to 20, and is used to
prevent poorly overlapping global map segment labels from
being propagated to the current frame. All segments sj 2 St
that did not match to any segment sj 2 Sy are assigned a
new persistent label lnew as Lt(si) = lnew- It is worth noting
that, in contrast to previous work on segment tracking across
frames [9], the proposed formulation disallows matching mul-
tiple segments in St to the same segment sj 2 Sy. Without
such constraint, information about a region in the map that
was initially segmented as one now being segmented in two
or more parts in the current frame would be lost, thus making
it impossible to fix incorrect under-segmentations over time.

We introduce here the notation (lj,om) to denote the
pairwise count in the global map between a persistent segment
label l; 2 L and a persistent instance label o,y 2 O.

(lj, om) is used here to determine the mapping It(0j) = om
from instance labels oj 2 O¢ to instance labels oy, 2 O.
Specifically, for each segment s; 2 S; with a corresponding
oi & 0 and no I¢(oj) defined yet, the persistent object label 6y,
with the highest pairwise count (L¢(si), 0j) > 0 is identified.
The object label oj is then mapped to Oy, as It(0i) = Om.
Remaining oj with no mapping I(oj) found are assigned a
new persistent instance label onew as It(0j) = onew. Following
a similar reasoning as above, multiple labels oj 2 Oy are
prevented from mapping to the same persistent label oy, 2 O
in order not to discard valuable instance segmentation infor-
mation from the current frame.

The result of this data association step is a set of 3D
segments sj 2 St from the current frame, each assigned a
persistent segment label [j = L(s;). Further, the corresponding
object instance label is matched to a persistent label oy, =
I¢(0i). Additionally, each segment s;j 2 Sy is associated with
the semantic object category c; predicted by Mask R-CNN

(Section [[TI=B).

D. Map integration

The 3D segments discovered in the current frame, including
some which are enriched with class and instance information,
are fused into a global volumetric map. To this end, the
Voxblox TSDF-based dense mapping framework is ex-
tended to additionally encode object segmentation information.
After projecting the segments into the global TSDF volume
using the known camera pose, voxels corresponding to each
projected 3D point are updated to store the incoming geometric
segment label information, following the approach introduced
in [7)]. Additionally, for each s; 2 S; integrated into the map
at frame ¢ with corresponding o;j 6 0, the pairwise count
between lj = L(sj) and the object instance om = I¢(0;) and
the pairwise count between /j and the class ¢;j are incremented
as,

(lj,om) ==
(j,ci) =

Each 3D segment sj 2 S in the global map volume is then
defined by the set of voxels assigned to the persistent label /.
If the segment represents a recognized, semantically annotated
instance then it is also associated with an object label 6, =
argmaxo,, (lj,om) and a corresponding semantic class & =
argmaxc, (lj,cj).

(lj,Om)+l
(lj,ci)+l .

(6)
)

IV. EXPERIMENTS

The proposed approach to incremental instance-aware se-
mantic mapping is evaluated on a Lenovo laptop with an Intel
Xeon E3-1505M eight-core CPU at 3.00 GHz and an Nvidia
Quadro M2200 GPU with 4 GB of memory only used for the
Mask R-CNN component. The Mask R-CNN code is based
on the publicly available implementation from Matterportﬂ
with the pre-trained weights provided for the Microsoft COCO
dataset [[13]. In all of the presented experimental setups, maps
are built from RGB-D video with a resolution of 640x480
pixels.

Zhttps://github.com/matterport/Mask_RCNN
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Fig. 3: Sample inventory of scene objects discovered during reconstruction of 10 indoor sequences from the SceneNN dataset. By virtue of a combined
geometric-semantic segmentation scheme, the proposed mapping framework is able to detect recognized elements from a set of known categories and
simultaneously discover novel, previously unseen objects in the scene. Accordingly, the shown collection features selected elements of predicted class chair
(first row), couch (second row), and table (third row), as well as a set of newly discovered objects without an associated semantic label (fourth row). Namely,
the discovered objects correspond to (from left to right): a jacket, a plastic bag, two types of fans, a loudspeaker, a cardboard box, a computer case, a heater,
a tissue paper roll, a kitchen appliance, a pillow, a tissue box, and a drawer. The individual models, shown here in the form of meshes, densely describe the

reconstructed object shapes and provide detailed smooth surface definitions.

To compare against previous work in [5], we evaluate the
3D segmentation accuracy of the proposed dense object-level
semantic mapping framework on real-world indoor scans from
the SceneNN [{8] dataset, improving over the baseline for most
of the evaluated scenes. A sample inventory of object models
discovered in these scenes is shown to contain recognized,
semantically annotated elements, as well as newly discovered,
previously unseen objects. Lastly, we report on the runtime
performance of the proposed system.

The framework is further evaluated within an online setting,
mapping an office floor traversed by a robotic platform.
Although the system operates at only 1 Hz, qualitative results
in the form of a semantically annotated object-centric recon-
struction validate the online nature of the approach and show
its benefits in real-world, open set conditions.

A. Instance-aware semantic segmentation

Several recent works explore the task of semantic instance
segmentation of 3D scenes. The majority of these, however,
take as input the full reconstructed scene, either processing
it in chunks or directly as a whole. Because such methods
are not constrained to progressively fusing predictions from
partial observations into a global map but can learn from
the entire 3D layout of the scene, these are not directly
comparable to the approach presented in this work. Among the
frameworks that instead explore online, incremental instance-
aware semantic mapping, the work in is, to the best of
our knowledge, the only one to present quantitative results
in terms of the achieved 3D segmentation accuracy. While
a comparison with [5] does not provide any insight into the
performance of the proposed unsupervised object discovery
strategy, it can help to assess the efficacy of the semantic
instance-aware segmentation component of our system.

In their work, Pham et al report instance-level 3D
segmentation accuracy results for the NYUDv2 40 class task,
which includes commonly-encountered indoor object classes,

as well as structural, non-object categories, such as wall,
window, door, floor, and ceiling. This set of classes is well-
suited for semantic segmentation tasks in which the goal is to
classify and label every single element, either voxel of surfel,
of the 3D scene. Indeed, the approach in [3] initially employs
a purely semantic segmentation strategy, and later clusters
the semantically annotated scene into individual instances.
However, a set of classes which includes non-object categories
does not apply to the object-based segmentation approach
proposed in this work. Therefore, rather than training on a
class-set that does not meet the requirements and goals of
the proposed framework, we relied on a Mask R-CNN model
trained on the 80 Microsoft COCO object classes [[13]. We
then evaluated the segmentation accuracy on the 9 object
categories in common between the NYUDv2 40 COCO class
tasks. Specifically, we picked the 9 categories that have an
unambiguous one-to-one mapping between the two sets.

The proposed approach is evaluated on the 10 indoor
sequences from the SceneNN [8]] dataset for which [5]] reports
instance-level segmentation results. For each scene, the per-
class Average Precision (AP) is computed using an Intersection
over Union (IoU) threshold of 0.5 over the predicted 3D
segmentation masks. As [5]] only provides class-averaged mean
Average Precision (mAP) values, these are compared with
mAP averaged over the 9 evaluated categories. The results
in Table [I| show that the proposed approach outperforms the
baseline on 7 of the 10 evaluated sequences, however it is
worth noting again that the reported mAP values are computed
over a smaller set of classes.

Besides evaluating the semantic instance-aware segmen-
tation, Figure [3| additionally shows a sample inventory of
selected object instances detected and densely reconstructed
across the 10 sequences. Along with recognized, semantically
annotated objects, the shown collection includes newly discov-
ered scene elements, highlighting the benefits of the proposed
unsupervised object discovery strategy.
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Fig. 4: Figure shows the robotic platform used for the online mapping experiment of an office floor. The map is reconstructed from RGB-D data recorded
with two Primesense cameras mounted on an ABB YuMi robot attached to a Clearpath Ridgeback mobile base. The final map shown as a mesh in Figure [(5)]
is reconstructed at a voxel size of 2cm. Figure shows a detail of the map where individual objects identified in the scene are represented with different
colors. The corresponding semantic categories of the recognized instances are shown in Figure [(d)] using the same color coding as in Figure [T} Figure
shows a single horizontal slice at 1 m height of the reconstructed TSDF grid with magenta indicating observed free space, knowledge about which can directly

benefit safe planning for navigation and interaction tasks.

Table [[I] shows the running times of the individual com-
ponents of the framework averaged over the 10 evaluated
sequences. The numbers indicate that the system is capable
of running at approximately 1Hz on 640x480 input.

Component Time (ms)
Mask R-CNN * 407
Depth segmentation * 753
Data association 136
Map integration 276

TABLE II: Measured execution times of each stage of the proposed incremen-
tal object-level mapping framework, averaged over the 10 evaluated sequences
from the SceneNN dataset with RGB-D input of 640x480 resolution.
Inference through Mask R-CNN runs on GPU, while the remaining stages
are implemented on CPU. The map resolution is set here to 1cm voxels.
Note that the components with * can be processed in parallel.

B. Online reconstruction and object mapping

The proposed system is evaluated in a real-life online map-
ping scenario. The robotic setup used for evaluation consists
of a collaborative dual arm ABB YuMi robot mounted on
an omnidirectional Clearpath Ridgeback mobile base. The
platform is equipped with the custom-built visual-inertial sen-
sor described in [23]], used only for online localization. Two
PrimeSense RGB-D cameras are mounted facing forwards and
downwards at 45 degrees, respectively, to capture dense depth

maps and color images at an increased effective field of view.
The complete setup is shown in Figure Fal

Within the course of 5 minutes, the mobile base was
manually steered along a trajectory through an entire office
floor. Real-time poses were estimated through a combination
of visual-inertial and wheel odometry and online feature-
based localization in an existing map built and optimized
with Maplab [26]. During scanning, the RGB-D stream of
the two depth cameras is recorded to be later fed through
our mapping framework at a frame rate of 1 Hz, emulating
real-time on-board operation. That is, any frames that exceed
the processing abilities of the system are discarded and not
used to reconstruct the object-level map of the scene. The
accompanying video illustrates the progressive output of the
incremental reconstruction and segmentation of the scene.

Qualitative results for the final object-centric map are shown
in Figure 4] Despite only a subset of the incoming RGB-D
frames being integrated into the map volume, the resulting
reconstruction of the environment densely describes the ob-
served surface geometry. The system is further able to detect
recognized objects of known class, and to discover novel,
previously unseen object-like elements in the scene. Recon-
structed over a trajectory length of over 80 m with a voxel
resolution of 2 cm, the entire map fits into 605 MB of memory,
which is comparable with the memory usage of the bare
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Voxblox framework. The final volumetric map additionally
provides free space information, relevant for safe planning for
robotic navigation and interaction tasks. Such tasks can be
carried out in parallel, as the total computational load of the
individual components of the framework corresponds to using
only 5 out of the 8 CPU cores.

It is worth noting that the quality of the reconstruction in
Figure [ has been in part affected by empirically measured
pose estimation errors accumulating up to 0.5 m. Because this
work focuses entirely on mapping and assumes localization
to be given, we leave the task of quantifying the impact of
inaccurate localization on the map quality to future work.

V. CONCLUSIONS

We presented a framework for online volumetric instance-
aware semantic mapping from RGB-D data. By reasoning
jointly over geometric and semantic cues, a frame-wise seg-
mentation approach is able to infer high-level category in-
formation about detected and recognized elements, and to
discover novel objects in the scene, for which no previous
knowledge about their exact appearance is available. The
partial segmentation information is incrementally fused into
a global map and the resulting object-level semantically an-
notated volumetric maps are expected to directly benefit both
navigation and manipulation planning tasks.

Real-world experiments validate the online nature of the
proposed incremental framework. However, to achieve real-
time capabilities, the runtime performance of the individual
components requires further optimization. A future research
direction involves investigating the optimal way to fuse RGB
and depth information within a unified per-frame object de-
tection, discovery and segmentation framework.
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