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Abstract

This paper describes a system for performing real-time multi-session visual mapping in large-scale environments. Multi-session

mapping considers the problem of combining the results of multiple simultaneous localisation and mapping (SLAM) missions

performed repeatedly over time in the same environment. The goal is to robustly combine multiple maps in a common metrical

coordinate system, with consistent estimates of uncertainty. Our work employs incremental smoothing and mapping (iSAM) as

the underlying SLAM state estimator and uses an improved appearance-based method for detecting loop closures within single

mapping sessions and across multiple sessions. To stitch together pose graph maps from multiple visual mapping sessions, we

employ spatial separator variables, called anchor nodes, to link together multiple relative pose graphs.

The system architecture consists of a separate front-end for computing visual odometry and windowed bundle adjustment on

individual sessions, in conjunction with a back-end for performing the place recognition and multi-session mapping. We provide

experimental results for real-time multi-session visual mapping on wheeled and handheld datasets in the MIT Stata Center. These

results demonstrate key capabilities that will serve as a foundation for future work in large-scale persistent visual mapping.

Keywords: bundle adjustment, place recognition, stereo, anchor nodes, iSAM.

1. Introduction

Despite substantial recent progress in visual simultaneous

localisation and mapping (SLAM) [1], many issues remain to

be solved before a robust, general visual mapping and navi-

gation solution can be widely deployed. A key issue in our

view is that of persistence – the capability for a robot to operate

robustly for long periods of time. As a robot makes repeated

transits through previously visited areas, it cannot simply treat

each mission as a completely new experiment, not making use

of previously built maps. However, nor can the robot treat

its complete lifetime experience as “one big mission”, with all

data considered as a single pose graph and processed in a sin-

gle batch optimisation. We seek to develop a framework that

achieves a balance between these two extremes, enabling the

robot to leverage off the results of previous missions, while still

adding in new areas as they are uncovered and improving its

map over time.

The overall problem of persistent visual SLAM involves

several difficult challenges not encountered in the basic SLAM

problem. One issue is dealing with dynamic environments, re-

quiring the robot to correct for long-term changes, such as fur-

niture and other objects being moved, in its internal representa-

tion; this issue is not addressed in this paper. Another critical
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issue, which is addressed in this paper, is how to pose the state

estimation problem for combining the results of multiple map-

ping missions efficiently and robustly.

Cummins defines the multi-session mapping problem as

“the task of aligning two partial maps of the environment col-

lected by the robot during different periods of operation [2].”

We consider multi-session mapping in the broader context of

life-long, persistent autonomous navigation, in which we would

anticipate tens or hundreds of repeated missions in the same en-

vironment over time. As noted by Cummins, the “kidnapped

robot problem” is closely related to multi-session mapping. In

the kidnapped robot problem, the goal is to estimate the robot’s

position with respect to a prior map given no a priori informa-

tion about the robot’s position.

Also closely related to the multi-session mapping problem

is the multi-robotmapping problem. In fact, multi-session map-

ping can be considered as a more restricted case of multi-robot

mapping in which there are no direct encounters between robots

(only indirect encounters, via observations made of the same

environmental structure). Kim et al. presented an extension to

iSAM to facilitate online multi-robot mapping based on multi-

ple pose graphs [3]. This work utilised “anchor nodes”, equiv-

alent to the “base nodes” introduced by Ni and Dellaert for de-

composition of large pose graph SLAM problems into submaps

of efficient batch optimisation [4], in an approach called Tec-

tonic Smoothing and Mapping (T-SAM). Our work builds on

the approach of Kim et al. [3] to perform multi-session visual

mapping by incorporating a stereo odometry frontend in con-

junction with a place-recognition system for identifying inter-
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and intra-session loop closures.

This paper makes a number of extensions to the work pre-

sented in [5]. In particular, in [5] we provided preliminary re-

sults of a multi-session visual SLAM system based on the ar-

chitecture shown in 1. Here we expand the discussion and give

details of changes that we have made to increase the system’s

overall robustness and to permit real-time processing over large

scale environments. Results are provided demonstrating robust

multi-session visual SLAM processing on datasets including (i)

up to four separate sessions (totalling > 45 minutes of video

at 20fps), (ii) wheeled and handheld sensors, (iii) indoor and

outdoor sequences, and, (iv) sequences involving full 6-DOF-

motion (i.e. ascending and descending stairs). We also present

a comprehensive quantitative evaluation of the system using the

above datasets.

The remainder of the paper is organised as follows. In the

next section we review related work in the area focussing on

multi-session and multi-robot approaches to localisation and

mapping. Section 3 provides an overview of the system archi-

tecture, with details of front-end processing including the stereo

odometry and single-session visual SLAM given in sections 3.1

and 3.2, respectively. The back-end modules including visual

place recognition and multi-session visual SLAM are explained

in sections 4.1 and 4.2, respectively. Experimental results and

a comprehensive quantitative analysis of the system’s perfor-

mance is provided in Section 5. Finally, Section 6 provides

concluding remarks and potential future directions for the re-

search.

2. Related Work

Several vision researchers have demonstrated the operation

of visual mapping systems that achieve persistent operation in

a limited environment. Examples of recent real-time visual

SLAM systems that can operate persistently in a small-scale

environment include Klein and Murray [6], Eade and Drum-

mond [7], and Davison et al. [8, 9]. Klein and Murray’s sys-

tem is highly representative of this work, and is targeted at the

task of facilitating augmented reality applications in small-scale

workspaces (such as a desktop). In this approach, the processes

of tracking and mapping are performed in two parallel threads.

Mapping is performed using bundle adjustment. Robust per-

formance was achieved in an environment as large as a sin-

gle office. While impressive, these systems are not designed

for multi-session missions or for mapping of large-scale spaces

(e.g., the interior of a building).

One exception to this has been the extension to PTAM de-

veloped by Castle et al. [10] to permit several cameras to work

in multiple maps, both separately or simultaneously. Here the

approach to dealing with large-scale environments is to permit

the user to decide what regions to map. Each map is bounded

in size and operates independently of other maps in the sys-

tem. To switch between maps the current frame is matched

against a set of subsampled keyframes from all existing maps.

The authors provide impressive results of the technique’s oper-

ation in a building scale environment. A key difference between

this approach and our work is that the system does not estimate

the transformation between the submaps and therefore does not

provide a global estimate the environment.

There have also been a number of approaches reported for

large-scale visual mapping. Although a comprehensive survey

is beyond the scope of this paper we do draw attention to the

more relevant stereo-based approaches. Perhaps the earliest of

these was the work of Nistér et al. [11] on stereo odometry.

In the robotics literature, large-scale multi-session mapping has

been the focus of recent work of Konolige et al. in developing

view-based mapping systems [12, 13]. Our research is closely

related to this work, but has several differences. A crucial new

aspect of our work in relation to [13] is the method we use for

joining the pose graphs from different mapping sessions. In the

view-based mapping approach, Konolige et al. employ the Toro

incremental optimisation algorithm to allow for real-time per-

formance. Due to the fact that Toro requires that all poses are

connected in a single graph, at the beginning of each new ses-

sion the new pose-graph is immediately connected to the last

pose from the previous session through what they refer to as a

”weak link”. The weak links are added with a very high covari-

ance and subsequently deleted after place recognition is used to

join the pose graphs [13]. In our approach, which extends [3]

to full 6-DOF, we use anchor nodes as an alternative to weak

links. Here each session is represented initially as a disjoint

pose-graph with each pose stored relative to that pose-graph’s

anchor node. When the place recognitions system identifies an

encounter between two separate sessions, the encounter induces

a constraint between the two associated poses and the anchor

nodes of the associated pose-graphs. Since the pose-graphs are

each represented relative to the anchors nodes, their use pro-

vides a more efficient and consistent way to stitch together the

multiple pose graphs resulting from multiple mapping sessions.

Further details on this aspect of our system are provided in Sec-

tion 3.4. In addition, our system has been applied to hybrid

indoor/outdoor scenes, with hand-carried (full 6-DOF) camera

motion.

3. System Overview

In this section we describe the architecture and components

of a complete multi-session stereo visual SLAM system. This

includes a stereo visual SLAM frontend, a place recognition

system for detecting single and multi-session loop closures, and

a multi-session state-estimation system. A schematic of the sys-

tem architecture is shown in Figure 1. The system uses a sub-

mapping approach in conjunction with a global multi-session

pose graph representation. Optimisation is performed by ap-

plying incremental and batch SAM to the pose graph and the

constituent submaps, respectively. Each submap is constructed

over consecutive sets of frames, where both the motion of the

sensor and a feature-based map of the scene is estimated. Once

the current submap reaches a user-defined maximum number

of poses, 15 in our system, the global pose graph is augmented

with the resultant poses.

In parallel to the above, as each frame is processed, the vi-

sual SLAM frontend communicates with a global place recog-

nition system for intra- and inter-session loop closure detection.
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Figure 1: Internal architecture of windowed and multi-session visual SLAM (vSLAM) processes.

When a loop closure is detected, pose estimation is performed

on the matched frames, with the resultant pose and frame-id’s

passed to the multi-session pose graph optimisation module.

3.1. Stereo Odometry

Within each submap the inter-frame motion and associated

scene structure is estimated via a stereo odometry frontend. The

most immediate benefit of the use of stereo vision is that it

avoids issues associated with monocular systems, including the

inability to estimate scale and indirect depth estimation. The

stereo odometry approach we use is similar to that presented by

Nistér et al. [11].

Our stereo odometry pipeline tracks features using a stan-

dard robust approach, followed by a pose refinement step. For

each pair of stereo frames we first track a set of Shi-Tomasi

corners in the left frame using the KLT tracking algorithm. The

resulting tracked feature positions are then used to compute the

corresponding feature locations in the right frame. Approxi-

mate 6-DOF pose estimation is performed through the use of a

RANSAC-based 3-point algorithm [14]. The input to the mo-

tion estimation algorithm consists of the set of tracked feature

positions and disparities within the current frame and the cur-

rent estimates of the 3D locations of the corresponding land-

marks. In our work we have found that ensuring that approxi-

mately 50 features are tracked between frames results in a re-

liable pose estimate through the 3-point RANSAC procedure.

Finally, accurate pose estimation is achieved by identifying the

inliers from the estimated pose and using them in a Levenberg-

Marquardt optimisation that minimises the reprojection error in

both the left and right frames.

In our stereo odometry implementationwe use a GPU-based

KLT tracker [15]. This minimises the load on the CPU (by dele-

gating the feature detection and tracker to the GPU) and exploits

the GPU’s inherent parallel architecture to permit processing at

high frame rates. In parallel to this we compute a disparity map

for the frame, which is then combined with the results of the

feature tracker, resulting in a set of stereo features.

In order to maintain an adequate number of features we de-

tect new features in every frame whilst at the same time setting

a minimum inter-feature distance in the KLT tracker. A conse-

quence of this approach is that the system tries to ensure that

there is a good distribution of features over the entire frame.

3.2. Single Session Visual SLAM

Deriving a pose graph representation from the stereo odom-

etry system involves two levels of processing. The first of these

optimises over the poses, features and 3D structure within a lo-

cal bundle adjustment window. As each new frame is added,

a full batch optimisation is performed. The second step trans-

fers optimised poses to the pose graph after a fixed maximum

number of frames is reached. The resulting pose graph struc-

ture contains no point features and can be optimised efficiently

even for a large number of poses.

We apply smoothing in combination with a homogeneous

point representation to the local window to improve the pose
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estimates obtained from visual odometry. In contrast to vi-

sual odometry, smoothing takes longer range constraints into

account, which arise from a single point being visible in mul-

tiple frames. The homogeneous representation allows dealing

with points at infinity, see Triggs et al. [16] or Hartley and Zis-

serman [17]. Points close to or at infinity cannot be represented

correctly by the conventional Euclidean parameterisation.

After removing the over-parameterisation of both rotation

and homogeneous point representations (see 4), the optimisa-

tion problem is solved with a standard least-squares solver. We

use the iSAM library [18] to perform batch smoothing with

Powell’s Dog-Leg algorithm [19]. iSAM represents the opti-

misation as a factor graph, a bipartite graph containing variable

nodes, factor nodes and links between those. Factor nodes, or

short factors, represent individual probability densities

fi(Θi) = fi(x ji , pki) ∝ exp

(

−
1

2

∥

∥Π(x ji , pki)− zi
∥

∥

2

Σi

)

(1)

where Π(x, p) is the stereo projection of a 3D point p into a

camera of given 3D pose x, yielding the predicted stereo pro-

jections (uL,v) and (uR,v), zi = (ûL, ûR, v̂) is the actual stereo

measurement, and Σi represents the Gaussian image measure-

ment noise. iSAM then finds the least-squares estimate Θ∗ of

all variables Θ (camera poses and scene structure combined) as

Θ∗ = argmax
Θ

∏
i

fi(Θi) (2)

In order to reduce the computational requirements of the

approach we employ a pose decimation scheme, whereby a

threshold is applied on the translational and rotational motion

of the sensor between poses. In our current implementation

the first pose of each session corresponds to the first frame of

the input sequence and is initialised to the 6-DOF origin for

that session. Subsequent to this each new pose corresponds to

the first frame where the inter-frame motion is at least 0.2m or

0.2rad from the last pose. The effect of this is to reduce the

total number poses within the pose graph, whilst maintaining

the accuracy of the final trajectory and map estimates. A sec-

ondary but important advantage of this approach is that it also

decreases drift, in particular when the sensor is stationary.

When the smoothing window reaches a maximum size or

when a loop closure is detected all poses and associated odom-

etry are transferred to the current session’s pose graph, and a

new local window is initialised. By including all poses from a

window, as opposed to just the first or first and last pose (as is

the case in other approaches) we ensure that we can represent

loop closures between arbitrary frames within the pose graph.

Full details of the loop closure handling are provided in Sec-

tion 4.2. To initialise a new window we use the last pose of the

previous window in conjunction with all landmarks that corre-

spond to features that are tracked into the current frame.

The pose graph is again optimised using the iSAM library

[18], but this time using the actual incremental iSAM algorithm

[20] to efficiently deal with large pose graphs. In contrast to the

stereo projection factors fi in the smoothing formulation above,

we now use factors gi

gi(Θi) = gi(x ji ,x j′i ) ∝ exp

(

−
1

2

∥

∥

∥
(x j′i ⊖ x ji)− ci

∥

∥

∥

2

Ξi

)

(3)

that represent constraints ci with covariances Ξi between pairs

of poses as obtained by local smoothing or by loop closure de-

tection. We use the notation xd = xb ⊖ xa from Lu and Mil-

ios [21] for representing pose xb in the local frame of pose xa
(xb = xa⊕ xd).

4. Quaternions and Homogeneous Point

The projective representation of point features as well as the

quaternion representation of rotations that we use here result in

over-parameterisations that can be resolved in much the same

way.

The solution for quaternions is well known; an accessible

explanation can be found in Grassia [22]. The set of unit quater-

nions, the 3-sphere S3 =
{

q ∈ R
4 : ‖q‖= 1

}

forms a Lie group

under quaternion multiplication. There is a two-to-one cover-

ing map from S3 onto SO(3) (antipodal points are identified

because q represents the same rotation as −q). The matrix Lie

algebra of SO(3) is so(3), the set of skew-symmetric matrices,

see Hall [23]. Because they have three parameters they provide

a minimal parameterisation of rotations through an exponential

map (typically evaluated using Rodrigues’ formula). The Lie

algebra of S3 is its tangent space R3 at the identity. Many ex-

ponential maps exist from R
3 to S3, here we use the following

one from Grassia [22]:

exp(d) =

(

1
2
sinc

(

1
2
‖d‖

)

d

cos
(

1
2
‖d‖

)

)

where d ∈ R
3 coincides with the axis/angle representation of

a rotation. As every minimal representation of rotations there

are singularities, here at multiples of 2π , though they can be

avoided by forcing d to fall into the range (−π ,π ], while still

allowing for all possible rotations. An existing quaternion q

is updated by an increment d using quaternion multiplication

qexp(d).
We show that the projective parameterisation in 3D is iso-

morphic to unit quaternions, allowing the use of the same ex-

ponential map. The projective parameterisation uses homo-

geneous four-vectors p = (x,y,z,w)⊤ ∈ R
4\{0} with the zero

vector excluded. A Euclidean point (x,y,z) is written in ho-

mogeneous coordinates as λ (x,y,z,1) for λ ∈ R\{0}, while
points at infinity satisfy w = 0. In this real projective space

RP
3, points along lines through the origin are equivalent by the

relation p ∼ λp,λ ∈ R\{0}. The set of homogeneous points

p ∈ R
4
,‖p‖= 1 with unit norm spans the 3-sphere S3 and pro-

vides a double cover of this real projective space (antipodal

points are identified). Therefore, the same exponential map

as for quaternions is applicable to normalised homogeneous

points.

An alternative exponential map is presented in Hartley and

Zisserman [17, Appendix 6.9.3] that uses Householder trans-

formations instead of quaternion multiplication. Both are valid,
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and we have not seen a major difference in their convergence.

Note that both methods only work well for bundle adjustment as

long as the cameras are near the origin, which is easy to satisfy

for our windowed bundle adjustment. Intuitively, the parame-

terisation becomes more nonlinear for cameras with center far

from the origin.

4.1. Place Recognition

Place recognition is an important component in the context

of large-scale, multi-robot and multi-session SLAM, where al-

gorithms based on visual appearance are becoming more popu-

lar when detecting locations already visited, also known as loop

closures. In this work we have implemented a place recognition

module based on the recent work of [24, 25], which demon-

strated robust and reliable performance.

The place recognition module has the following two stages:

• The first stage is based on the bag-of-words (BoW)

method [26], which is implemented in a hierarchical

way [27]. This implementation enables quick compar-

isons of an image at time t with a database of images in

order to find those that are similar according to a normal-

ized similarity score ηc. Then, there are three possibili-

ties: if ηc ≥ α+, the match is considered highly reliable

and accepted, if α−
< ηc < α+, the match is checked

by conditional random field (CRF)-Matching in the next

step, otherwise the match is ignored. In our implemen-

tation, ηc is the ratio between the BoW score computed

between the current image and the candidate and the im-

age one second ago in the database, as follows:

ηc(t, t
′) =

s(t, t ′)

s(t, t− 1)
(4)

Theminimum confidence expected for a loop closure can-

didate is α− = 0.15 and for a loop closure to be accepted

is α+ = 0.8. For each session a new image is added to the

database whenever the sensor’s motion exceeds a thresh-

old of 0.2m or 0.2rad based on the output from frontend’s

motion estimation.

• The second stage consists of checking the previous candi-

dates with CRF-Matching in 3D and image spaces (near

and far information). The CRF-Matching approach is an

algorithm based on Conditional Random Fields (CRF)

[28] proposed for matching 2D laser scans [29] and for

matching image features [30]. CRF-Matching is a prob-

abilistic model that is able to jointly reason about the

association of features. In [24] CRF-Matching was ex-

tended to reason in 3D space about the association of

data provided by a stereo camera system in order to ver-

ify loop closures hypothesis. This verification stage was

improved in [25] taking into account the far information,

the remaining information in one image without 3D in-

formation. We compute the negative log-likelihood ΛG

t,t′

from the maximum a posteriori (MAP) association be-

tween the current scene in time t against the candidate

scene in time t ′. We accept the match only if the nor-

malized similarity scores assert η3D ≤ β3D∧ηIm ≤ βIm,

with:

ηG =
ΛG

t,t′

ΛG
t,t−1

(5)

where G indicates the graph, 3D or Im. βG is a con-

trol parameter that defines the level of similarity we de-

mand for (t, t − 1) in terms of close range β3D, and far

range βIm. Where smaller values for β means a higher

demand. In our current implementation we use β3D =
βIm = 2. Figure 2 summarises the steps involved in the

place recognition scheme.

This place recognition module exploits the efficiency of the

BoW to detect revisited places in real-time. CRF-Matching

is a more computationally demanding data association algo-

rithm because it uses much more information than BoW. For

this reason, only the positive results of BoW are verified by

CRF-Matching.

4.2. Multi-Session Visual SLAM

For multi-session mapping we use one pose graph for each

robot/camera trajectory, with multiple pose graphs connected to

one another with the help of “anchor nodes”, as introduced in

Kim et al. [3] and Ni and Dellaert [4].

In this work we distinguish between intra-session and inter-

session loop closures. Processing of loop closures is performed

firstly with each frame corresponding to a new pose being input

to the above place recognition system. These candidate frames

are matched against previously input frames from all sessions.

On successful recognition of a loop closure the place recog-

nition system returns the matched frame’s session and frame

identifier in conjunction with a set of stereo feature correspon-

dences between the two frames. These feature sets consist of

lists of SURF feature locations and stereo disparities. Note that

since these features are already computed and stored during the

place recognition processing, their use here does not place any

additional computational load on the system.

These feature sets serve as input to the same camera orien-

tation estimation system described in Section 3.1. Here the dis-

parities for one of the feature sets are used to perform 3D recon-

struction of the points in the scene. These 3D points are passed

with their corresponding 2D features from the second image

into a 3-point algorithm-basedRANSAC procedure. Finally the

estimated orientation is iteratively refined through a non-linear

optimisation procedure that minimises the re-projection error in

conjunction with the disparity.

Inter-session loop closures introduce encounters between

pose graphs corresponding to different visual SLAM sessions.

An encounter between two sessions s and s′ is a measurement

that connects two robot poses xsj and xs
′

j′
. This is in contrast to

measurements between poses of a single trajectory, which are

of one of two types: The most frequent type of measurement

connects successive poses, and is derived from visual odometry

and the subsequent local smoothing. A second type of measure-

ment is provided by intra-session loop closures.
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(a) BoW step (b) CRF step

Figure 2: Illustration of steps involved in the combined BoW-CRF place recognition scheme. (a) For each input stereo pair we

compute a set of SURF-features for one image of the stereo pair 2a to provide the input of the BoW stage. (b) For the CRF stage

we compute the two minimum spanning trees (MST), one for features with 3D information (near features), and the second for the

remaining ones, with image information (far features). In (b), we show the two resulting graphs: in blue the graph for far features

(GIm), in dark red the graph for near features (G3D). We apply CRF-Matching over both graphs. The minimum spanning tree of G3D

is computed according to the metric coordinates, projected over the middle image only for visualisation. In the bottom, we show

G3D in metric coordinates with the 3D point cloud (textured) of each vertex in the tree. The MST provides a representation of the

dependencies between features in a scene, and allows for robust consistency checks of feature associations between scenes. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The use of anchor nodes [3] allows at any time to combine

multiple pose graphs that have previously been optimised inde-

pendently. The anchor node ∆s for the pose graph of session s

specifies the offset of the complete trajectory with respect to a

global coordinate frame. That is, we keep the individual pose

graphs in their own local frame. Poses are transformed to the

global frame by pose composition ∆s⊕ xsi with the correspond-

ing anchor node.

In this relative formulation, the pose graph optimisation re-

mains the same, only the formulation of encounter measure-

ments involves the anchor nodes. The factor describing an en-

counter between two pose graphs will also involve the anchor

nodes associated with each pose graph. The anchor nodes are

involved because the encounter is a global measure between

the two trajectories, but the pose variables of each trajectory

are specified in the session’s own local coordinate frame. The

anchor nodes are used to transform the respective poses of each

pose graph into the global frame, where a comparison with the

measurement becomes possible. The factor h describing an en-

counter ci is given by

h(xsj,x
s′

j′ ,∆
s
,∆s′) ∝ exp

(

−
1

2

∥

∥

∥
((∆s⊕ xsj)⊖ (∆s′ ⊕ xs

′

j′))− c

∥

∥

∥

2

Γ

)

(6)

where the index i was dropped for simplicity. The concept of

relative pose graphs generalises well to a larger number of robot

trajectories. The number of anchor nodes depends only on the

number of robot trajectories.

Finally we note that although the PR system currently re-

turns only the best match, it is possible to employ other strate-

gies. For example the current architecture could be extended to

allow the PR system to return multiple candidates. Here, each

candidate would then be processed independently, i.e. by per-

forming the consistency check, etc., prior to being integrated

into the posegraph.

5. Experiments and Results

In this section we assess the performance of our system in

a number of different scenarios using a dataset that was col-

lected at the Ray and Maria Stata Center at MIT over a period

of months. This building is known for its irregular architecture

and provides a good testing ground for visual SLAM techniques

in general.

The dataset includes indoor, outdoor, and mixed sequences

captured using robotic and manually wheeled platforms and

a handheld camera with full 6-DOF movement (e.g. ascend-

ing and descending stairs, etc.). All image sequences were

captured using a Point Grey Bumblebee colour stereo camera

with a baseline of 11.9cm and where both lenses had a focal

length of 3.8mm. The sensor resolution of each camera was

1024× 768 pixels which we subsampled to 512× 384 pixels

prior to processing. The wheeled platforms also included hori-

zontally mounted 2D LiDAR scanners. Although we do not use

the LiDAR sensors in our system, the accompanying laser data

allows us to compare the performance of our technique to that

Experiment 1 Experiment 2 Experiment 3

Indoor/Outdoor Indoor Indoor Outdoor

Num. sessions 1 4 3

Sequence length 20.3 min 45 min 4.7 min

Num. poses 883 1562 1406

Intra-session 112 4 0

Inter-session 0 260 13

Table 1: Description of experimental datasets.

of a laser-based scan matcher in restricted wheeled platform

scenarios (see Section 5.1 for details).

The complete multi-session visual SLAM system follows

the architecture shown in Figure 3. Here each input image se-

quence constitutes a separate session and is processed indepen-

dently by a dedicated vSLAM frontend. The output of each

frontend is processed by the multi-session backend, which is

responsible for multi-session place recognition and pose graph

estimation.

The internal components of the frontend and backend (see

Figure 1) are implemented as a set of loosely coupled processes

that communicate using the Lightweight Communications and

Marshalling (LCM) robot middleware system [31]. This per-

mits straightforward parallelism between the components of the

system, hence minimising the impact on all modules due to

fluctuations in the load of a particular module (e.g. due to

place recognition deferring to CRF processing). Furthermore

the overall architecture can be transparently reconfigured for

different setups (e.g. from single CPU to multi-core or dis-

tributed processing).

In the remainder of this section we provide both a qualita-

tive and quantitative assessment of the system’s performance.

The quantitative assessment is based on three separate experi-

ments; one which assesses the system on a single-session sce-

nario and two which assess the system on multi-session scenar-

ios. Details of the datasets used in each of the experiments are

provided in Table 1. For each of the experiments, processing

was carried out on an Intel R© CoreTM i7 940 2.93GHz based

machine with 8GB of RAM and an nVidia R© GeForce R© 9800

GT graphics card.

5.1. Single-Session Visual SLAM Results

In this section we provide results from a number of single

session SLAM experiments. To do this we have applied the sys-

tem in single session mode (i.e. only running a single frontend)

across a variety of sequences from the Stata Center dataset. The

results show that system is capable of operating over extended

sequences in both indoor, outdoor andmixed environmentswith

full 6-DOF motion.

For example, two feature-basedmaps for outdoor sequences

are shown in Figure 4. Here, for (a), the underlying grid is at

a scale of 10m, where the trajectory is approximately 100m in

length. An example image from the sequence is shown in the in-

set with the GPU KLT feature tracks overlaid on the left frame.

Figure 4 (b) shows a similar scale sequence that includes full
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Figure 3: Multi-session visual SLAM architecture, see Figure 1 for more details on the single-session frontend and themulti-session

backend.

6-DOF motion, where the user has carried a handheld camera

up a stairs.

To evaluate the accuracy of the frontend we compare its tra-

jectory estimate to that of a scanmatching algorithm applied to

the corresponding LiDAR data. In the absence of loop closures

we have found the system to have drift of approximately 1%-

3% in position during level motion (i.e. without changes in pitch

angle). To demonstrate this, Figure 5 shows two maps with two

trajectories, both taken from the same sequence. The black con-

tour shows the 2D LiDAR scanmatcher-based map. The scan-

matcher’s estimated pose is shown by the dark blue trajectory,

which can be seen more clearly in the lower right-hand inset.

The distance between grid lines in the figure is 2m. From the

figure the horizontal displacement of the final poses is approxi-

mately 60cm with a total trajectory of approximately 20m.

An example of the accumulated error in position due to drift

is shown in Figure 6. Here the dataset consists of an image se-

quence taken over an indoor area within in the Stata Center.

The grid is at a scale of 5m with the sequence taken by travel-

ling on a large loop over a space of approximately 35m×15m.

The image at the top shows the result of the motion estimate in

the absence of a loop closure. The majority of the drift in this

example is due to the tight turn approximately two-thirds of the

way through the sequence, where the divergence between each

traversal of the hallway can be seen.

The center figure shows the result of the correction applied

to the pose graph due to a sequence of loop closures occurring

at the area highlighted by the red box. Here it can seen that

the pose graph sections showing the traversals of the hallway

are much more coincident and that the misalignment in cor-

responding portions of the map is reduced considerably. The

figure also shows the accuracy of the map relative to the ground

truth CAD floorplan.

As mentioned in the previous section, in order to measure

the computational requirements of the system we evaluated the

processing times of each component based on three sets of se-

quences, each drawn from the Stata dataset. The output map

and trajectory for experiment 1: the single session indoor se-

quence (see Table 1) is shown in Figure 7. In total the input

sequence was 20.3 minutes in length (i.e. 24360 frames). Also

shown in the table is the final number of poses in the pose graph,

and the number of intra-session loop closures. As can be seen

from the results, the pose decimation scheme described in Sec-

tion 3.2 significantly reduces the number of poses, in this case

to 883. It is important to point out that the ratio of poses to

frames in this example is low due to the fact that the camera

is mounted on a B21 robot which is moving slowly through the

environment. As will be seen in the next section, when the cam-

era moves quickly such as with handheld sequences this ratio is

approximately an order of magnitude higher.

Table 2 provides summaries of the run-times for the princi-

pal modules of the system, where the first two columns provide

the mean and variance for experiment 1. Note that the times for

feature tracking and stereo odometry modules correspond to the

computational cost for each frame of the However since each

iteration of the windowed bundle adjustment and place recog-

nition modules only occur on each new keyframe (i.e. pose),

the figures provided are per keyframe input sequence. However

given that each of the iterations of the windowed bundle adjust-

ment and place recognition modules only occur on each new

keyframe (i.e. pose), the times provided are per keyframe. Fi-

nally since the pose graph updates only occur when the frontend

window reaches 15 poses or whenever a loop closure occurs,

the times shown in this row are per window. Given that each

of the modules runs as a separate process, with communication

handled via LCM, each task is handled by a separate core of the

CPU.

Figures 8a-8c provide plots of the computation time for

each iteration of the windowed bundle adjustment, place recog-

nition, and pose graph iSAM, respectively. As can be seen

from Figure 8c the total number of updates to the pose graph

is approximately 160 with a total of 883 poses in the final pose
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(a)

(b)

Figure 4: Single session visual SLAM processing including

full 6-DOF motion.

graph. Also, from this graph it is possible to see (i) the increase

in computation time as the size of the pose graph grows, and (ii)

the impact due to loop closures.

Figures 8d-8e provide plots of the cumulative computation

time as a function of processed input sequence time for each of

the modules in the frontend and backend respectively. Given

that each of these modules runs in parallel, each on a separate

core of the CPU, it is clear from this graph that the overall sys-

tem is capable of running in real-time.

Although the odometry system has shown to be robust over

maps of the order of hundreds of meters, two failure modes for

the system are due to tracker failure during (i) high-speed mo-

tion, and (ii) low-texture or low-contrast environments, which

can also cause errors whereby the disparity estimation fails over

a large set of features. In the current system we address this

through reinitialising the tracker and inserting a new pose where

the motion relative to the previous pose is set to zero with large

covariance. Hence we keep the two sections of the pose graph

(i.e. at either side of the failure) topologically connected whilst

capturing the high degree of uncertainty between them. This

is done with the intention that future loop closures between the

Figure 5: Comparison of drift in single session visual SLAM

against 2D LiDAR scan matcher over a 20m trajectory. Grid

scale is 2m. (For interpretation of the references to colour in

the text, the reader is referred to the web version of this article.)

sections will provide adequate constraints to correct for this un-

certainty.

A frame where such an odometry failure occurred in exper-

iment 1 is shown in the right-most frame at the top of Figure 7

(i.e. image D). Here lack of texture in the environment results in

a low feature count and hence an inability to estimate the cam-

era’s motion. Figure 7 also highlights the location of the frame

in the map. At the point in the sequence where this failure oc-

curs the map diverges, however a subsequent loop closure close

to point C in the map corrects for this drift. As can be seen from

comparison, the final estimated structure is in close agreement

with the ground truth floor plan.

We note that the above approach can be avoided for short-

term tracking failures by incorporating inertial sensors. For

longer tracking failures, an alternative approach that we are

currently investigating is the possibility of using multi-session

SLAM, whereby odometry failure results in the creation of a

new session with a weak prior on the initial position. This dis-

joint session is treated the same as any other session. When a

new encounter does occur, the session can be reconnected to the

global pose graph.

5.2. Multi-Session Visual SLAM Results

To evaluate the multi-session performance of the system we

tested it on the Experiments 2 and 3 datasets detailed in Ta-

ble 1. The rationale for choosing the datasets was that the exper-

iment 2 dataset contains, as a subset, the single session dataset

from Experiment 1, and therefore allows a direct comparison to

be made between the system’s single- and multi-session opera-

tion. The sequences used in experiment 3 differ from the other

datasets in that they were captured using a handheld Bumblebee

camera in an outdoor environment and contain subsequences

where the user ascends and descends stairs, and hence provide

a much larger range of motion in all 6-DOF.

Figure 10 provides a number of different views of the out-

put of the system for the Experiment 2 dataset. Figures (a) –
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Experiment 1 Experiment 2 Experiment 3

Single Session Indoor Multi-session Indoor Multi-session Outdoor

Mean(s) Variance(s) Mean(s) Variance(s) Mean(s) Variance(s)

Feature tracking 0.0309 3.29× 10−5 0.0315 4.90× 10−5 0.0374 4.8× 10−5

Stereo odometry 0.0084 1.61× 10−4 0.0083 1.62× 10−4 0.0021 5× 10−5

WBA 0.0755 0.0048 0.0665 0.0029 0.0611 0.0026

Place recognition 0.1703 0.0832 0.1794 0.0792 0.1049 0.0148

iSAM 0.0996 0.0040 0.1960 0.0242 0.1242 0.0170

Table 2: Mean runtimes and variances for each iteration of each module of the system for each of the experiments reported in the

paper. Feature tracking and stereo odometry are executed for each frame of the input sequence. Windowed Bundle Adjustment

(WBA) and Place Recognition are executed for each pose. Incremental updates to the pose-graph are computed via iSAM once for

each window.

(d) show the results for the individual sessions including tra-

jectories and maps. Figure (e) shows the trajectories where the

elevation increases with time and the purple links between the

trajectories correspond to the intra- and inter-session loop clo-

sures. Finally, Figure (f) shows the complete multisession pose-

graph and map including all four sessions. This is overlaid on a

ground-truth floorplan of the corresponding region of the Stata

Center.

As reported in Table 1, in this experiment the input dataset

consisted of 4 separate sessions, which, when combined, corre-

sponded to a total of 45 minutes of video at 20 fps. The final

multi-session pose graph contains 1562 poses and spans an area

of approximately 75m× 25m. Comparing the output to that of

experiment 1, the ratio of the number of poses in the final tra-

jectory to the length of the input video sequence is of the same

order. Timings for each of the modules of the system for this

dataset are given in columns 3 and 4 of Table 2.

Figure 9 provides a set of plots for the module of execution

times for Experiment 2 equivalent to those shown for Experi-

ment 1 in Fig 8. As can be seen from the multi-session results,

each of the modules except for the multi-session iSAM mod-

ules have similar mean execution times to the single-session

operation. The reason for the difference in iSAM is due to the

fact that the complexity of the optimisation is a function of the

number of poses in the pose graph.

Figure 12 shows the estimated map and trajectory for the

Experiment 3 dataset, where again the grid is at a scale of 5m.

Figure 12a shows a plan view of the map, where it can be seen

that the total area covered by the 3 sessions is approximately

110m× 80m. A side view of the map where the 6DOF motion

of the camera, is apparent is shown in Figure 12b. Given that

the sequences in this dataset are taken from a handheld camera

the motion of the sensor is at much higher velocities and as

a consequence the ratio the number of poses to the number of

frames processed is an order of magnitude higher that in the two

previous experiments. In particular, although the total length of

the image sequences is 4.7 minutes compared to the 45 minutes

of the indoor multi-session experiment, the number of poses are

within 10% of each other.

Columns 5 and 6 of Table 2 provide details of the timings

for experiment 3. Two important differences with the outdoor

dataset was that the appearance of the scene was far more tex-

tured and as such the disparity estimation and 3D feature track-

ing was more reliable. The effect of this can be seen in the

speed up of the stereo odometry computation which was princi-

pally due to significantly less iterations of the RANSAC proce-

dure. Detailed plots of the timings for experiment 3 are shown

in Figure 11.

One issue encountered during the outdoor sequences was

intra-frame aliasing of SURF features (e.g. due to the repeated

red bricks). This resulted in a number of true positive loop clo-

sures from the place recognition system being rejected due to

a failure of the geometric consistency test, which was in turn

due to a failure of the SURF correspondence estimation. For

example in experiment 3 the total number of loop closures was

13. This is the reason why, although the total number of poses

is similar to experiment 2, the iSAM processing time is lower.

6. Conclusions

In this paper we have presented a real-time 6-DOF multi-

session visual SLAM system. The principal contribution of

the paper is to integrate all of the components required for a

multi-session visual SLAM system using iSAM with the an-

chor node formulation [3]. In particular this is the first exam-

ple of an anchor node-based SLAM system that (i) uses vision

as the primary sensor, (ii) operates in general 6-DOF motion,

(iii) includes a place recognition module for identifying en-

counters in general environments, and (iv) derives 6-DOF pose

constraints from those loop closures within these general envi-

ronments (i.e. removing the need for fiducial targets, as were

used in [3]).

We have demonstrated this system in indoor and outdoor

environments using both wheeled and handheld sensors as in-

put. We have presented examples of single- and multi-session

pose graph optimisation and map construction, and provided a

comprehensive quantitative assessment of the system’s perfor-

mance in a number of different scenarios.

Multi-session visual mapping can provide a solution to the

problem of large-scale persistent localisation and mapping. In

the future we plan to extend the results published here to in-

corporate the entire Stata dataset described in the Section 5.
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(a)

(b)

(c)

Figure 6: Single-session dataset containing a large loop. Here

the grid scale is at 5m. (a) Map and pose graph prior to loop

closure showing drift in position and structure. (b) Map and

pose graph showing correction in the position and structure due

to a series of loop closures in the area shown by the red square.

Background image shows ground truth CAD floorplans of the

environment. (c) Textured version of figure (b).

Furthermore we intend to evaluate the approach in online col-

laborative mapping scenarios over extended timescales.
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Figure 7: Top-down orthographic projection of the results for the experiment 1 single session dataset described in Table 1. Here

the map is overlaid on an architectural floorplan for comparison with ground-truth. The reference grid is shown at a scale of 5m.

Images A–D displayed above the map show sample frames from the sequence with their approximate location highlighted on the

map. Further details can be found in Section 5.1. (In order to fully interpret this figure the reader is referred to the online colour

version.)
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Figure 8: Timings for experiment 1: single session indoor sequence. (a) and (b) show the processing times per keyframe for

windowed bundle adjustment and place recognition, respectively. (c) shows the processing time for multisession iSAM for each

window, distinguishing between windows with and without loop closures. (d) and (e) show the cumulative processing time for the

individual modules of the frontend and backend, respectively.
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Figure 9: Timings for experiment 2: multi-session indoor sequences. (a) and (b) show the processing times per keyframe for

windowed bundle adjustment and place recognition, respectively. (c) shows the processing time for multisession iSAM for each

window, distinguishing between windows with and without loop closures. (d) and (e) show the cumulative processing time for the

individual modules of the frontend and backend, respectively.
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(a) (b)

(c) (d)

(e)

(f)

Figure 10: Stata Center second floor dataset with four separate sessions captured over a 75m× 25m area. The underlying grid is

set at a 5m scale in all figures. Figures 10a–10d show maps and pose graphs for each individual session. Figure 10e shows the

detected loops within and between pose graphs where the z-axis increase with time. Figure 10e shows the combined multi-session

map and pose graph. See Section 5.2 for further details. (In order to fully interpret this figure the reader is referred to the online

colour version.)
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Figure 11: Timings for experiment 3: multi-session outdoor handheld sequences. (a) and (b) show the processing times per

keyframe for windowed bundle adjustment and place recognition, respectively. (c) shows the processing time for multisession iSAM

for each window, distinguishing between windows with and without loop closures. (d) and (e) show the cumulative processing time

for the individual modules of the frontend and backend, respectively

16



(a)

(b)

Figure 12: Multi-session results for outdoor datasets from experiment 3 including 3 sessions. Figure (a) shows a plan view where

the grid is at a scale of 5m. Figure (b) shows an orthographic side view where the full 3D structure is apparent, in particular the

stairs. See Section 5.2 for further details.
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