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Abstract— Global registration of heterogeneous ground and
aerial mapping data is a challenging task. This is especially
difficult in disaster response scenarios when we have no prior
information on the environment and cannot assume the regular
order of man-made environments or meaningful semantic cues.
In this work we extensively evaluate different approaches to
globally register UGV generated 3D point-cloud data from
LiDAR sensors with UAV generated point-cloud maps from
vision sensors. The approaches are realizations of different
selections for: a) local features: key-points or segments; b)
descriptors: FPFH, SHOT, or ESF; and c) transformation
estimations: RANSAC or FGR. Additionally, we compare the
results against standard approaches like applying ICP after
a good prior transformation has been given. The evaluation
criteria include the distance which a UGV needs to travel to
successfully localize, the registration error, and the computa-
tional cost. In this context, we report our findings on effectively
performing the task on two new Search and Rescue datasets.
Our results have the potential to help the community take
informed decisions when registering point-cloud maps from
ground robots to those from aerial robots.

I. INTRODUCTION

Multi-robot applications with heterogeneous robotic teams
are an increasing trend due to numerous advantages. An
Unmanned Ground Vehicle (UGV) can often carry high
payloads and operate for extended periods of time, while
an Unmanned Aerial Vehicle (UAV) offers swift deployment
and the opportunity to rapidly survey large areas. This is
especially beneficial in Search and Rescue (SaR) scenarios,
see Fig. 1 as an example. Here, an initial overview can
be made using UAVs before deploying UGVs for closer
exploration in areas of interest. However, when it comes to
efficiently combining the strengths of such robotic teams,
we face numerous challenges. Additionally to the large
difference in point of view, the sensor modalities used for
mapping and localization are often drastically different for
UAVs and UGVs. While UAVs typically use cameras as the
prime sensor, UGVs often rely on LiDAR. This poses a major
challenge in efficiently exploiting the UAV data on a UGV as
registration between different sensor modalities is difficult to
perform. Furthermore, using advanced functionalities such as
traversability analysis and path planning for UGVs on UAV
generated maps requires tight alignment between the data
of different modalities, active localization and suitable map
representations.

One critical step in using maps across several robots is the
identification of the alignment between their maps. Several
techniques are possible with increasing generality [1]. Firstly

Fig. 1: Global localization of a 3D UGV sub-map (red point-cloud) in a
3D UAV reference map (coloured point-cloud). Green lines indicate the
resulting matches associated to points in the two point-clouds. The data
stems from the Montelibretti outdoor dataset and drawn from the complex
experimental set-up.

it is possible to impose a common origin of different robots’
maps, e.g., by using common starting locations as done
by Michael et al. [2]. Another option is to use global
positioning sensors that allow for a good initial guess on
the alignment of coordinate frames. In the case that several
robots operate concurrently, it is also possible to find an
alignment by a relative localization of the robots against
each other [3]. However, the most challenging task is to
register maps without any prior information regarding their
mutual alignment. Furthermore, for the SaR application as in
the “Long-Term Human-Robot Teaming for Robots Assisted
Disaster Response” (TRADR) project, the scenarios are
completely unpredictable which rules out the possibility of
using supervised learning into the pipeline [4].

While our previous work on online multi-robot SLAM for
3D LiDARs [5]1 demonstrates a reliable registration among
point-cloud maps taken from multiple ground robots, there
is still the issue of dealing with differences in modality and
in point of view between UAVs and UGVs.

The above mentioned challenges motivate us to evaluate
several techniques to globally localize a UGV using its Li-
DAR sensor in a point-cloud map generated using the Multi-
View Reconstruction Environment (MVE) [6] from images
recorded by a UAV. The global registration (or localization)
pipeline schematized in Fig. 2 consists of feature extraction,
feature description and matching, and a 3D transformation
estimation. We provide an evaluation and an analysis of the

1Within this paper, this system will be referred to as LaserSLAM.



implementation and performance of different choices for the
modules in this registration pipeline. These choices are:

• Local feature extraction: key-points or segments.
• Feature descriptors: Fast Point Feature Histogram

(FPFH), Unique Signatures of Histograms for Local
Surface Description (SHOT) or Ensemble of Shape
Functions (ESF).

• Transformation estimation: RANSAC based or Fast
Global Registration (FGR).

The evaluation is conducted on two real world datasets of
an indoor and an outdoor SaR scenario. This paper presents
the following contributions:

• Extensive evaluation of global registration realizations
for registering UGV and UAV point-clouds from LiDAR
and camera data respectively.

• Two new datasets for multi-modal SLAM in SaR sce-
narios.

II. RELATED WORK

The field of 2D metrical map-merging based on over-
lapping map segments is well studied in literature [7–9].
However, the task is increasingly difficult when moving to
3D environments [1], especially when dealing with hetero-
geneous robotic teams, where 3D data is generated from
different sensors and with different noise characteristics [10].
Michael et al. [2] demonstrate a system for collaborative
UAV-UGV mapping. The authors propose a system where
a UGV equipped with a LiDAR sensor performs 2.5D
mapping, using the flat ground assumption and consecu-
tively merging scans using Iterative Closest Point (ICP). In
dedicated locations a UAV equipped with a 2D LiDAR is
launched from the UGV and maps the environment using a
pose-graph SLAM algorithm. Maps generated from the UAV
are then fused online with the UGV map using ICP initialized
at the UAV starting location.

Forster et al. [11] go a step further in fusing UAV-UGV
map data from different sensors, i.e., RGB-D maps from the
UGV and dense monocular reconstruction from the UAV.
The registration between the maps is performed using a 2D
local height map fitting in x and y coordinates with an initial
guess within a 3m search radius. The orientation is a priori
recovered from the magnetic north direction as measured by
the Inertial Measurement Unit (IMU)s. In a related setting
Hinzmann et al. [12] evaluate different variants of ICP
for registering dense 3D LiDAR point-clouds and sparse
3D vision point-clouds from Structure from Motion (SfM)
recorded with different UAVs into a common point-cloud
map using an initial GPS prior for the map alignment.

Instead of using the generated 3D data for localizing
between RGB and 3D LiDAR point-cloud data, Wolcott and
Eustice [13] propose to generate 2D views from the LiDAR
point-clouds based on the surface reflectivity. However, this
work focuses only on localization and it is demonstrated only
on maps recorded from similar points of view.

In our previous work [14] we presented a global registra-
tion scheme between sparse 3D LiDAR maps from UGVs

and vision keypoint maps from UAVs, exploiting the rough
geometric structure of the environment. Here, registration is
performed by clustering of geometric keypoint descriptors
matches between map segments under the assumption of a
known z-direction as determined by an IMU.

Zeng et al. [4] present geometric descriptor matching
based on learning. However, this approach is infeasible in
unknown SaR scenarios, as the descriptors do not generalize
well to unknown environments.

Dubé et al. [15] demonstrate better global localization
performance in 3D LiDAR point-clouds by using segments
as features instead of key-points. This approach has been
demonstrated with multiple UGVs with the same robot-
sensor set-up, but it is still to be studied how the approach
performs under large changes in point of view.

Assuming good initialization of the global registration,
Zhou et al. [16] perform a robust optimization. The work
claims faster and more robust performance than ICP.

In summary, the community addresses the problem of
heterogeneous localization. However, there is a research gap
in globally localizing from one sensor modality to the other
in full 3D without strong assumptions on view-point, terrain
or initial guess.

III. AERIAL-GROUND ROBOT MAPPING SYSTEM

In this section, we present our SLAM system. It extends
our LaserSLAM system [5] with the component of global
map alignment and localization in point-cloud maps from
different sources, as well as online extension of these maps.
Fig. 2 illustrates the architecture of the proposed system.
While the major LaserSLAM system is running on the UGV,
it also allows to load, globally align, and use point-cloud
maps from other sources. As example, maps generated via
MVE from UAVs or point-cloud maps resulting from bundle
adjustment on data collected by another LiDAR equipped
robot can all be leveraged.

A. Mapping algorithms

In the proposed system, we use a dual map representation
for the different tasks of the robots, i.e., point-cloud maps
and OctoMaps [17]. While the individual robots maintain
point-clouds and surface meshes, these are integrated in
a global OctoMap representation serving as the interface
to other modules of the SaR system, e.g., traversability
analysis as shown in [18]. Another advantage of the unified
OctoMap representation is a persistent representation which
also incorporates dynamic changes detection.

On the UAV’s monocular image data we perform an SfM
and Multi-View-Stereo-based scene reconstruction using the
MVE [6]. The MVE produces a dense surface mesh of
the scene by extensive matching and is therefore an offline
method that is computed off-board the UAV. Although,
efficient online mapping methods exist, we decide to use a
method that produces high quality maps, that can be further
used in the TRADR system, e.g., on the UGV for path
planning or for situation awareness of first responders.
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Fig. 2: Mapping System overview. The inputs to the system are the local UGV map and the global UAV reference map. If a global registration is triggered,
the key-points are computed on both maps. Consecutively, the system performs descriptor extraction and matching. The initial global transformation is
then refined by a step of ICP between the global and the local clouds, resulting in a fused map that is used for further functionalities of the system, such
as path planning.

On the UGVs we use a variant of the LaserSLAM system
which estimates in real-time the robot trajectory alongside
with the 3D point-cloud map of the environment. Laser-
SLAM is based on the iSAM2 [19] pose-graph optimiza-
tion approach and implements different types of sequential
and place recognition constraints. In this work, odometry
constraints are obtained by fusing wheel encoders and IMU
data using an extended Kalman filter while scan-matching
constraints are obtained based on ICP between successive
scans.

After the creation of the UAV map, we facilitate a global
registration scheme to localize the UGV in the UAV map as
described in Sec. IV.

For UGV-only mapping, the LaserSLAM framework en-
ables multiple robots to create consistent 3D point-cloud
maps. However, a different regime must be followed for
generating and extending a consistent 3D map by fusing in
the UAV dense 3D maps. Since the UAV maps are the result
of an offline batch optimization process, the maps are already
loop closed and represent a consistent initial basis for the
global map. Furthermore, we treat the UAV maps as static,
i.e., the map is taken as is. LaserSLAM is therefore extended
to include a mode that allows the robot to use a given base
map. This base map is then treated as the fully optimized
map and extended with updates from the UGV LiDAR. It
is important to note that the point-cloud map is only the
internal representation for the robot to perform SLAM. All
map updates as well as dynamic changes are maintained in
the OctoMap representation that is derived from the point-
cloud updates and serves as a unified representation for all
processes using the mapping data.

B. Map usage

Thanks to the unified OctoMap interface, the merged map
data can directly be used on other modules of the TRADR
system. Notably, it can directly be used for traversability
analysis and subsequent metrical path planning. The system
therewith enables the UGVs to also use UAV generated maps
for path planning. A UGV-loaded UAV map of one testing

Fig. 3: Resulting UGV traversability estimation on the outdoor Montelibretti
dataset. Traversable areas are marked in green, while non traversable areas
are indicated with red. The parametrization is identical to the parametrization
for LiDAR traversability analysis.

site (see Fig. 1) is depicted in Fig. 3 indicating traversable
areas in green and non-traversable areas in red.

The OctoMap serves as interface for further modules of
the system, such as novelty detection which is a separate
contribution and out of the scope of this work.

IV. GLOBAL REGISTRATION

This section describes the pipeline that we use to globally
register the UGV with respect to the UAV point-cloud map.
The evaluation of different choices within this pipeline is
the focus of our paper. The global registration consist of
four modules: feature extraction, description, matching and,
estimation of the SE(3) transformation.

A. Feature extraction

This module defines which components in the point-cloud
map are going to be used for the registration. Key-point are
samples from the full point-cloud that have some level of
invariance to the point of view. Here, we use the Intrinsic
Shape Signatures (ISS) detector [20]. The next option, is to
add more information by clustering the point-cloud, resulting
in segments. These segments are taken as the local features
with the potential of being more descriptive than just 3D
points [15]. Here, we follow a Euclidean based clustering



Realization Feature Descriptor Trans. Estimation
FPFH Key-point FPFH RANSAC-based
FPFH FGR Key-point FPFH FGR
FPFH seg Segments FPFH RANSAC-based
SHOT Key-point SHOT RANSAC-based
SHOT FGR Key-point SHOT FGR
SHOT seg Segments SHOT RANSAC-based
ESF seg [15] Segments ESF RANSAC-based

TABLE I: Global registration realization by different choices in the sub-
modules.

as the segmentation algorithm. We do not explore global
features as they are highly point of view dependent.

B. Descriptors

This module takes each feature and computes a descriptor
with the aim of being descriptive enough such that it is
reproducible on different maps of the same location. The
descriptor is based on the key-point, and its neighborhood,
or on the subset of points that belong to a segment. Here,
we explore three descriptors:

• Fast Point Feature Histogram (FPFH) [21].
• Unique Signatures of Histograms for Local Surface

Description (SHOT) [22].
• Ensemble of Shape Functions (ESF) [23].

C. Description Matching

The matching module is in charge of solving the data
association problem between features from both maps by
comparing their descriptors. In our implementation we use
the nearest neighbor search in the space of the corresponding
descriptor.

D. Transformation Estimation

Once a set of 3D point pairs is declared, this module
computes the transformation such that the 3D points from
one map are moved to the location of their correspondences
in the reference map. In absence of outliers, the problem
could be solved by minimizing a least square error function.
Unfortunately, the presence of outliers is unavoidable and
this module must deal with them. Here we explore two
alternative methods. The first one is a RANSAC-based
approach which is already available in PCL. The second one
is based on the recent proposed FGR [16]. FGR uses the
scaled Geman-McClure estimator as robust cost function into
the optimization objective to neutralize the possible outlier
matches.

E. Realizations

We explore different global registration alternatives by
choosing different methods in each module. The realizations
are as shown in Table I.

As global registration strategies, the evaluation focuses on
11 different configurations. Those that are shown in Table I
plus their combinations when removing the ground plane
prior to key-point detection, denoted by gr at the end. Ground
removal is done by RANSAC based plane fitting.

F. Performance metrics
For the evaluation metrics, we use transformation errors

∆T on the alignment between the UGV and UAV maps that
are represented as

∆T =

[
∆R ∆t
0 1

]
(1)

with rotation matrix ∆R and translation vector ∆t =
(∆x,∆y,∆z)T. The translational error et is computed as
follows:

et = ‖∆t‖ =
√

∆x2 + ∆y2 + ∆z2 (2)

The rotational error er equates to:

er = arccos
trace(∆R− I)

2
(3)

It is important to note that the two map types are not perfectly
aligned in all locations due to the multi-modal nature of the
data and we can therefore only evaluate errors down to a
positional resolution of 0.2m and angular resolution of 2◦

respectively. Furthermore, we register the data using ICP in
the basic experiment, to give an indication on the achievable
alignment, as ICP always converged to a good solution in
our experiments given a good initial guess. Motivated by the
results of Hinzmann et al. [12], we consider registrations
as successful when ICP is able to perform the final local
alignment. Therefore, the thresholds for translational and
rotational errors are set to et = 3m and er = 5◦ above
the resulting ICP solution of the basic experiment to count
successful registrations.

V. EXPERIMENTS

We evaluate our approach on two challenging SaR datasets
recorded within the TRADR project which we will make
available with this publication. The evaluation focuses on
the global registration of the multi-modal point-cloud data.

A. Datasets
The first of these datasets was generated in an outdoor

firemen training location in Montelibretti, Italy. The scenario
simulates a car accident around a tunnel. It consists of six
UGV runs in partly overlapping locations of the disaster
area and one large UAV-generated map covering the whole
site of approximately 80m× 80m. The travelled trajectories
of the robots are 2 × 30m, 2 × 60m, and 2 × 110m of
consecutive missions following the same paths twice. For the
evaluation we use one UGV run of each size. Here, the UGV
mapping data is fully covered in the UAV map, except for
an indoor exploration of the tunnel which was not accessible
to the UAV. The scenario and the trajectories are depicted
in Fig. 4a.

The second dataset was recorded at a decommissioned
power plant in Dortmund, Germany, consisting of several
UGV runs and several large UAV-generated maps covering
different parts of the power plant, including the entire ma-
chine hall which was also visited by one UGV and has a size
of 100m× 20m. The UGV run is fully covered in the UAV
map and has a travelled distance of approximately 80m, as
illustrated in Fig. 4b.



(a) Montelibretti outdoor dataset.

(b) Dortmund indoor dataset.

Fig. 4: Top-down views of two SaR datasets considered in our experiments.
The robot trajectories are indicated in green, red, and blue and overlaid on
the colored UAV point-clouds.

B. Experimental setup

We evaluate several global registration strategies on in-
creasingly challenging experimental set-ups. All set-ups con-
sider the iteratively growing UGV map produced by laser-
SLAM as local map. For the basic set-up, the global map
is a cropped version of the UAV map, that approximately
covers the space of the local map at any iteration. The more
challenging intermediate set-up uses the cropped UAV map
as seen at the last iteration of the UGV mapping as global
map. Finally, the complex set-up considers the full UAV map
for global localization.

As global registration strategies, the evaluation focuses on
the 11 configurations presented in Sec. IV-E.

C. Registration performance

This section evaluates the global registration performance
of the different algorithms considered, using the metrics
presented in Sec. IV-F.

1) Parametrization: We choose the parametrization of the
FPFH and SHOT descriptors to yield good performance
across all data used, i.e., a histogram and search radius
of 2.0m for FPFH and SHOT respectively. Our parameter
choice is further motivated by extensive evaluation and shows
plateauing performance in a large region around the chosen
size, indicating robust performance. The matcher is based
on performing fast nearest neighbor search in a FLANN tree
[24], while the geometric verification is based on RANSAC

and clustering. Furthermore, FGR is parametrized for the
best possible performance we could find and using the
same parametrization for FPFH and SHOT as the other
experiments.

D. Results

Fig. 1 and Fig. 5 illustrate qualitative global registration
between UGV sub-maps and global UAV maps on the tested
datasets. In Fig. 6 and Table II the quantitative performance
of the evaluated approaches in depicted. While Fig. 6 shows
translational and rotational error of the individual approaches
over all datasets, Table II reports the minimal amount of
cumulated UGV scans, i.e., the minimal travelled distance for
reliable global registration. Here, we define reliable global
registration, if from the associated UGV sub-map, the errors
do not exceed the error thresholds et and er for 90% of the
cases.

In this experimental set-up the descriptor matching ap-
proach as described in Section IV performs best throughout
all experiments. FPFH yields satisfying performance in the
basic experiments. However, its performance drastically de-
grades in the more complex cases.

SHOT on the other hand shows reliable performance
throughout all experiments, with the required overlap in-
creasing with the complexity of our test-cases. Here, the
ground removal does not provide a significant performance
boost, especially since the ground plane extraction is unreli-
able on the large UAV map as we do not have incremental
pose-updates from the robot on segments of the map. How-
ever, ground removal does not degrade the performance as
it does for FPFH, expressing robust performance of SHOT
over varying conditions.

While the RANSAC-based geometric verification can re-
ject a large amount of mismatched descriptors and does not
rely on the point of initialization, FGR is less robust to
poor initialization as done for the intermediate and complex
experiments. For the reduced search space in the basic and
intermediate experiments, FGR is able to achieve reasonable
registration performance and therefore shows high potential
to be used for such reduced search problems, when carefully
modelling its robust cost function.

While the segmentation approach shows very good perfor-
mance for reproducible segmentations, e.g., single-modality
localization [15], we found that the considered parametriza-
tions of Euclidean segmentation in combination with the
considered descriptors did not generalize well between the
modalities and could not deliver interesting results in the
experiments. For the sake of clarity of the plots, we therefore
only show their performance in the basic experiments in
Fig. 6. Since the remainder of the matching algorithm is
identical to the well performing descriptor matching, we
believe that given a reliable segmentation, the approach
has the potential to yield very good performance for the
global registration case. However, a purely geometric ground
removal and segmentation on the full UAV point-cloud that
is comparable to the segmentation on the UGV map is a hard
problem, especially for cluttered SaR scenarios.
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(a) Translational error for basic Mon-
telibretti experiment.
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(b) Translational error for intermediate
Montelibretti experiment.
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(c) Translational error for complex Mon-
telibretti experiment.
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(d) Rotational error for basic Mon-
telibretti experiment.
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(e) Rotational error for intermediate Mon-
telibretti experiment.
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(f) Rotational error for complex Mon-
telibretti experiment.
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(g) Translational error for basic Dortmund
experiment.
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(h) Translational error for intermediate
Dortmund experiment.
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(i) Translational error for complex Dort-
mund experiment.
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(j) Rotational error for basic Dortmund
experiment.
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(k) Rotational error for intermediate Dort-
mund experiment.
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(l) Rotational error for complex Dort-
mund experiment.

Fig. 6: Translational and rotational error of plots for the Montelibretti (outdoor) and Dortmund (indoor) experiments on global registration. All errors are
plotted over the number of iterations, i.e., the growing size of the UGV map. Here, we indicate experimental configurations as follows: SHOT, FPFH and
ESF denote the used descriptors, an additional FGR denotes if we used the fast global optimization instead of the RANSAC-based outlier filtering, and
we add gr for cases in which also ground removal was performed before descriptor extraction. The ICP solution is illustrated for the basic experiments.



Configuration Mb Mi Mc Db Di Dc

FPFH 1 45 60 2 N/A N/A
FPFH gr N/A N/A N/A N/A N/A N/A
FPFH FGR 1 50 54 3 N/A N/A
FPFH FGR gr 60 60 43 3 N/A N/A
SHOT 1 10 36 1 1 3
SHOT gr 1 1 36 1 1 7
SHOT FGR 1 35 35 1 12 N/A
SHOT FGR gr 1 29 28 1 12 N/A
FPFH seg N/A N/A N/A N/A N/A N/A
SHOT seg N/A N/A N/A N/A N/A N/A
ESF seg N/A N/A N/A N/A N/A N/A

TABLE II: Minimal number of LiDAR scans for successful global registra-
tion experiments. Here, Mb, Mi, Mc, denote the basic, intermediate, and
complex experiment on the Montelibretti dataset, while Db, Di, and Dc

denote the different experimental set-ups on the Dortmund data. The UGV
travels on average 0.8m between two scans.

Fig. 5: Resulting global localization between 3D UGV sub-map (red point-
cloud) and global 3D UAV map (coloured point-cloud). Green lines indicate
the resulting descriptor matches associated to points in the two point-clouds.
The data stems from the Dortmund indoor dataset and drawn from the
complex experimental set-up.

1) Timings: Additionally to the evaluation of residuals,
computation times are an important factor in the choice
of algorithms in robotics. Table III lists the computational
times of the four main components of the global registration
algorithms when executed on an Intel i7-4600U CPU @
2.10GHz. The computation times are reported per UGV
LiDAR scan which has an acquisition time of 3s on the
considered platform.

Although our focus was not on maximizing computational
efficiency, all approaches can be performed in this time
window and therewith in real-time. We are confident that they
can be further improved to also yield faster processing times.
With key-point detection times increasing with the amount
of points in the point-cloud, the segmentation approach is the
fastest in the first step. Descriptor extraction, is fastest for
SHOT descriptors, also scaling with the amount of points.
However, the largest contribution to the computational time
has the descriptor matching which is longest for SHOT
and low for FPFH. For the segmentation, we report the
timings for the high-dimensional ESF features and achieve
low timings, due to the compact representation of segments.
Finally, RANSAC-based geometric consistency is slower
than the optimization-based FGR.

E. Discussion

The global registration of 3D UAV and UGV point-
cloud data is a difficult problem. Based on our evaluation,
the most general solution that we devise is a key-point
descriptor matching algorithm using SHOT descriptors. In
our evaluation, FPFH descriptors performed well, when the
overlap between the maps is large, but failed for the more
complex experiments, and showed to be sensitive to ground
removal.

The segmentation showed to not deliver satisfying results,
as it requires repeatable ground removal and segmentation,
which could not be achieved in the considered configura-
tions and scenarios. Key-point detection on the other hand
performed well.

SHOT descriptor matching is computationally more ex-
pensive than FPFH due to high descriptor dimensionality, but
showed best performance throughout. The processing time
can be speeded up by removing the ground in environments
that allow for reliable ground removal.

Finally FGR can yield additional speed up of the transfor-
mation estimation. Yet, when using FGR, the cost function
must be carefully considered as the technique is prone
to converge to local minima. While the RANSAC-based
transformation estimation takes generally longer than FGR
the robustness to local minima is greatly increased. Also, the
additional computational time for RANSAC was negligible
in our experiments.

VI. CONCLUSION

This paper presented global registration algorithms for
UGV and UAV point-clouds generated from heterogeneous
sensors, i.e., LiDAR sensors for UGVs and cameras for
UAVs, and drastically different view-points. The registration
algorithm is based on geometrical descriptor matching. The
approach was integrated with a full SaR robotic mapping sys-
tem, bridging the gap between effective exploitation of UAV
mapping data on UGVs. We evaluated several different 3D
descriptor-based registration techniques and identify the best
performing approach for the problem of global point-cloud
registration from heterogeneous sensors in SaR scenarios.

Future avenues of research could include point-cloud reg-
istration by using further informative cues than the geometri-
cal information alone for data registration between the sensor
modalities. This could benefit runtime and compactness of
point-cloud description of the proposed algorithm.
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