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Abstract—We propose a place recognition algorithm for simul-
taneous localization and mapping (SLAM) systems using stereo
cameras that considers both appearance and geometric informa-
tion of points of interest in the images. Both near and far scene
points provide information for the recognition process. Hypothe-
ses about loop closings are generated using a fast appearance-only
technique based on the bag-of-words (BoW) method. We propose
several important improvements to BoWs that profit from the fact
that, in this problem, images are provided in sequence. Loop clos-
ing candidates are evaluated using a novel normalized similarity
score that measures similarity in the context of recent images in
the sequence. In cases where similarity is not sufficiently clear, loop
closing verification is carried out using a method based on condi-
tional random fields (CRFs). We build on CRF matching with two
main novelties: We use both image and 3-D geometric information,
and we carry out inference on a minimum spanning tree (MST),
instead of a densely connected graph. Our results show that MSTs
provide an adequate representation of the problem, with the ad-
ditional advantages that exact inference is possible and that the
computational cost of the inference process is limited. We compare
our system with the state of the art using visual indoor and outdoor
data from three different locations and show that our system can
attain at least full precision (no false positives) for a higher recall
(fewer false negatives).

Index Terms—Bag of words (BoW), computer vision, conditional
random fields (CRFs), recognition, simultaneous localization and
mapping (SLAM).

I. INTRODUCTION

IN this paper, we consider the problem of recognizing loca-
tions based on scene geometry and appearance. This prob-

lem is, particularly, relevant in the context of large-scale global
localization and loop-closure detection in mobile robotics. Al-
gorithms that are based on visual appearance are becoming
popular because cameras are easily available and provide rich
scene detail. In recent years, it has been shown that taking ge-
ometric information also into account further improves system
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Fig. 1. Scheme of our proposal applied to a scene at time t in the sequence.

robustness. Most systems rely on a geometrical checking (GC)
to verify spatial consistency [1]–[7].

We propose to solve the place recognition problem by using
two complementary techniques (see Fig. 1; preliminary versions
of this study were described in [8] and [9]). The first one is
based on the bag-of-words method (BoW) [10], which reduces
images to sparse numerical vectors by quantizing their local
features. This enables quick comparisons among a set of images
to find those which are similar. We use a hierarchical BoW [11]
with several novelties that consider the sequential nature of data
acquisition. First, we define a novel normalized similarity score
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872 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 4, AUGUST 2012

η to evaluate similarity with respect to recent images in the
sequence. We also enforce a temporal consistency of the can-
didate matches to improve robustness, and, finally, we classify
the candidates into three categories according to the normalized
similarity score: High confidence, unclear, and clear rejection.

Unclear loop-closure candidates are verified by matching the
scenes with conditional random fields (CRFs), which is the
second technique considered. CRF matching is an algorithm
that is based on CRFs [12], recently proposed to match 2-D
laser scans [13] and image features [14]. CRF matching uses a
probabilistic model which is able to, jointly, reason about the
association of features. Here, we extend CRF matching to reason
about the association of data provided by a stereo camera system
in both image space and in 3-D space. This allows our system
to consider all information provided by a stereo pair, both near
and far. As graph structure for the CRFs in our problem, we
propose the use of the minimum spanning tree (MST), where
vertices are the features detected in the images, and edge weights
are Euclidean distances between them. Because we code near
information in the 3-D metric space and far information in image
coordinate space, each type of visual information is represented
in a separate graph. We also propose accepting the loop-closure
candidates based on a normalized similarity score in terms of
the likelihoods of the matched scenes, as well as with respect to
recent images.

Our basic idea is to exploit the efficiency of BoW to detect
revisited places in real time using only appearance (see Sec-
tion III-A) and the robustness of CRF matching to verify, only
in unclear cases, that revisiting matches are correct (see Sec-
tion III-B).

In Section IV, we analyze the performance of our system
using image sequences from the RAWSEEDS project, obtained
with a frontal stereo camera in both indoor and outdoor environ-
ments. These sequences contain challenging scenes, including
many cases of perceptual aliasing, changes in illumination due
to time of day, and dynamic environments. We compare our
system with the state of the art in visual place recognition, fast
appearance-based mapping (FAB-MAP) 2.0 [5], [15]. Our sys-
tem exhibits better precision–recall performance.

II. RELATED WORK

Place recognition using visual information has been a problem
of great interest in robotics for some time. Most successful meth-
ods consider appearance or geometric information, or a combi-
nation of both. Williams et al. [16] compared three loop-closure
methods representative of each idea: A map-to-map method
that considers mainly geometry, an image-to-image method that
considers only appearance, and an image-to-map method that
considers both. The best results were obtained for the image-to-
image and image-to-map methods, although the image-to-map
method does not scale well in large environments.

The image-to-image method considered in the work of
Williams et al. was FAB-MAP, the first successful appearance-
only method, which was proposed by Cummins and New-
man [15]. FAB-MAP uses the BoW representation [10], sup-
ported by a probabilistic framework. This system proved very

successful in large-scale environments. It can run with full pre-
cision (no false positives), although at the expense of low recall
(the rate of true positives declines). Avoiding false positives is
crucial because they result in failure to obtain correct maps,
but avoiding false negatives is also important because they limit
the quality of the resulting maps, particularly, if large loops are
not detected. Geometric information has shown to be important
in avoiding false positives while sacrificing less true positives.
Angeli et al. [1] proposed an incremental version of BoW, us-
ing a discrete Bayes filter to estimate the probability of loop
closure. Since the Bayes filter can still exhibit false positives
in cases where the same features are detected, but in a differ-
ent geometric configuration, the epipolar constraint was used
to verify candidate matchings. Valgren and Lilienthal [2], [3]
also verify topological localization candidates using the epipo-
lar constraint, but matching of an image is carried out against
the complete image database, which can become inefficient for
large environments. Regarding false negatives, Mei et al. [17]
apply a query-expansion method that is based on the feature co-
visibility matrix to enrich the information of the locations and
facilitate loop detection. In the field of object retrieval, Chum
et al. [18] also use a query-expansion method to perform image
queries against large databases, using appearance information
only. All initial candidates are re-ranked using an affine ho-
mography, and then, query expansion is carried out. Currently,
the performance of such query-expansion methods is heavily
dependent on parameter tuning [17]. Furthermore, they do not
improve the recall in cases where the image depicts a new place,
or there is perceptual aliasing [5].

Other methods have shown the importance of incorporating
geometric constraints to avoid false positives. Konolige et al. [7]
uses a stereo pair to check for a valid spatial transformation be-
tween two pairs of matching scenes by trying to compute a
valid relative pose transformation. The acceptance criteria are
based on the number of inliers. A very similar strategy for GC
is used by Newman et al. [6] with stereo, over the candidates
provided from FAB-MAP using an omnidirectional camera. Ol-
son et al. [4] test the spatial consistency of a set of candidate
matchings by additionally considering their associated pose es-
timates. This requires odometry or some other source for the
priors on the poses. Cummins and Newman [5] incorporated a
simplified constraint check for an omnidirectional camera in-
stalled on a car in FAB-MAP 2.0. This system was tested using
two extremely large (70 km and 1000 km) datasets. They ob-
tain recalls of 48.4% and 3.1%, respectively, at 100% precision.
Recently proposed by Paul and Newman [19], FAB-MAP 3-D,
additionally, includes 3-D distances between features provided
by a laser scanner. This results in higher recall for the same
precision in the first urban experiment of FAB-MAP. However,
the system can only make inferences about visual features in the
laser range.

The place recognition problem has also been addressed using
only 3-D range data. Steder et al. [20] extract features from range
images obtained by a 3-D laser scanner and query a database
in order to detect loop closures. This system has high computa-
tional requirements compared with systems based on BoWs, but
higher recall is attained for the same precision. An important
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limitation is that this system cannot distinguish between loca-
tions with similar shape but different appearance, for exam-
ple, corridors, or with different background beyond the sensor’s
range.

Our system follows a slightly different approach: In order to
attain full precision and high recall, an improved BoW technique
is used in a first step for the generation of loop closing matches.
In unclear cases, loop closing verification is carried out using
CRF matching based on both image and 3-D geometry provided
by the stereo camera. CRF matching was introduced in [13] to
match 2-D laser scans. If visual information is available, tex-
ture around laser points can be used for matching, although the
remaining visual information is ignored. The authors proposed
the possibility of detecting loop closures with CRF by taking the
maximum log-likelihood of the match between the current and
all previous scans. Comparing the current location against all the
previous ones is impractical in real applications. Furthermore,
that metric does not provide a way to distinguish between true
and false loop closures. The same framework is proposed in [14]
to associate features in images considering texture and relative
image coordinates. A 2-D Delaunay triangulation is used as
graph structure.

In our system, the use of a stereo camera allows us to com-
bine appearance information with 3-D metric information when
available. We use the MST as the graph structure instead of
the dense Delaunay triangulation. This idea was, previously,
used by Quattoni et al. [21] in the context of object classifi-
cation. In that work, equivalent classification performance was
shown for MSTs in comparison with more densely connected
graphs. In addition, trees allow exact inference algorithms, as
compared, for instance, with loopy belief propagation (BP) for
cyclic graphs, which is approximate and more expensive. As
in [21], our results show that MSTs properly encode connections
between the hidden variables and ensures global consistency.

Anguelov et al. [22] proposed to use associative Markov net-
works (another discriminative graphical model) for 3-D dense
laser data in the context of segmentation of multiple objects.
The graph used by them is a mesh over all the 3-D points. In
the same kind of application, Lim and Suter [23] use CRFs and
subsample the 3-D laser data with an adaptive data reduction
based on spatial properties in order to reduce both learning and
inference times. We take advantage of texture in visual informa-
tion to subsample the 3-D dense information and consider only
salient visual features and their coverage areas.

III. OUR PROPOSAL

In this section, we describe the two components of our system
that constitute the core of our approach: Loop closing detection
and loop closing verification. Our place recognition system can
be summarized in algorithm 1.

A. Loop Closing Detection

In the spirit of visual BoW [10], we first represent an image
of the scene as a numerical vector by quantizing its salient
local speed up robust feature (SURF) features [24] [see Fig.
2(a)]. This technique entails an offline stage that consists in

clustering the image descriptor space (the 64-D SURF space, in
our case) into a fixed N number of clusters. This is done with
a rich enough set of training images, which can be independent
of the target images. The centers of the resulting clusters are
named visual words; after the clustering, a visual vocabulary is
obtained. Now, a set of image features can be represented in the
visual vocabulary by means of a vector v of length N . For that,
each feature is associated with its approximately closest visual
word. Each component vi is, then, set to a value in accordance
with the relevance of the ith word in the vocabulary and the
given set, or 0 if that word is not associated with any of the
image descriptors. There are several approaches to measure the
relevance of a word in a corpus [25]; in general, the more a
word appears in the data used to create the visual vocabulary,
the lower its relevance is. We use the term frequency-inverse
document frequency (tf-idf) as proposed in [10].

This method is suitable to manage a large amount of images;
moreover, the authors in [11] present a hierarchical version
which improves efficiency. In this version, the descriptor space
clustering is done hierarchically, obtaining a visual vocabulary
arranged in a tree structure, with a branch factor k and L depth
levels. This way, the comparisons for converting an image de-
scriptor into a visual word only need to be done in a branch and
not in the whole discretized space, reducing the search com-
plexity to logarithmic. Our implementation1 of this data struc-
ture is used in this paper with k = 9, L = 6, and the k-means++
algorithm [26] as clustering function. This configuration yielded
the best performance in our tests and experiments.

1) Normalized Similarity Score: Representing images as nu-
merical vectors is very convenient since it allows us to perform
really quick comparisons between images. There are several
metrics to calculate the similarity between two image vectors.
We use a modified version of the one proposed in [11]. Given
two vectors v and w, their similarity is measured as the score

1Available at http://webdiis.unizar.es/∼dorian
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Fig. 2. Scene from an outdoor environment. In each scene, we get the (a) SURF features over one image of the stereo pair and compute the two MSTs: one
for features with 3-D information (near features) and the other for the remaining ones (far features). (b) Graph for far features (GI m ) in blue. (c) Graph for near
features (G3D ) in dark red. We apply the CRF matching over both graphs. The MST of G3D is computed according to the metric coordinates; here, it is projected
over the images only for visualization. (d) G3D in metric coordinates with the 3-D point cloud (textured) of each vertex in the tree. The MST gives us an idea of
the dependences between features in a scene and enforces the consistency of the feature association between scenes.

s(v, w)

s(v, w) = 1 − 1
2

∥
∥
∥
∥

v

‖v‖ − w

‖w‖

∥
∥
∥
∥

(1)

where ‖.‖ stands for the L1-norm. Note that this score is 0 when
there is no similarity at all and 1 when both vectors are the same.

In a general problem with BoWs, when comparing a vector v
with several others, choosing the vector w, whose score s(v, w)
is maximum, is usually enough to establish a match. However,
this is not enough in our context. Ours is a special case where
the acquired data are sequential. This means that vectors v and
w are associated with instants of time t and t′ and that we
can take advantage of this fact. Furthermore, it is expected to
have lots of very similar images in our problem, since they are
collected close in time. In many cases, the matched vector with
the highest score s may not be the one we are looking for.
We want to distinguish those cases, but the range the score s
varies is very dependent on the query image and the words this

contains so that it is difficult to set a threshold that works well
in every situation. For these reasons, we define a novel metric
of similarity, the normalized similarity score ηc , as

ηc(t, t′) =
s(vt , wt ′)
s(vt , vt−γ )

. (2)

We normalize the score obtained from a match between vt and
wt ′ with the expected score for the query vector vt . The expected
value for vt is the score obtained when comparing it with a very
similar vector. In our case, this is the vector obtained γ = 1 s
ago. If the score s(vt , vt−γ ) is very small (e.g., if the robot
rotated very fast and those two images were not similar at all),
the normalized similarity score is not reliable. For this reason,
we discard those query vectors vt such that s(vt , vt−γ ) < 0.1.
For the rest of the cases, the higher the ηc , the more similar the
two images. The effect of this normalization is to increase the
matching scores of those query images that obtain small scores
s because of their number of features, bringing them closer to
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those attaining higher s. Note that the normalized similarity
score can be defined for any similarity score.

2) Temporal Consistency: Our system takes an image at time
t from the stereo pair at one frame/s. The image is converted
into a BoW vector vt , which is stored in a set W . At the same
time, an inverted file is maintained to keep track of the images
in which each visual word is present [10]. The set W and the
inverted file compose our database of places already visited. The
current image vector vt is compared with all the ones previously
stored in set W that have at least one word in common with vt .
The complexity of this operation in the worst case is linear in the
number of stored vectors, but checking the common words by
looking up the inverted file makes it very quick. The result is a
list of matches <vt, wt ′ >, associated with their scores ηc(t, t′),
where wt ′ are the vectors matched from W . Of these matches,
those whose instants t and t′ are too close are discarded to avoid
matching images taken very close in time. We disallow matches
against images taken less than 20 s ago. This value may depend
on the length of the loops and the velocity of the robot, but we
noticed that this value suffices with the usual environment and
platforms we use in our experiments.

To detect loops, we impose a temporal constraint. A loop can-
didate between images at time t and t0 is detected if there exist
matches <vt, wt0 >,< vt−1 , wt1 >,< vt−2 , wt2 >, . . ., for a
short time interval of τl = 4 s, that are pairwise consistent. There
is consistency if the difference between consecutive timestamps,
t0 , t1 , . . ., is small (i.e., within τd = 2 s). These temporal values
were selected according to the movement speed of the robot in
our image sequences, and the expected reliability of the method.

Finally, the match <vt, wt0 >, with normalized score
ηc(t, t0), is checked by a double threshold (α−, α+) in order
to be accepted as a loop closure. If this score is high enough
(ηc(t, t0) ≥ α+ ), the match is very likely to be correct, so the
candidate is accepted as a loop closing. On the contrary, if
this score is small (ηc(t, t0) < α−), the candidate is rejected.
In the cases where this normalized score alone is not sufficient
to ensure loop closure (α− ≤ ηc(t, t0) < α+ ), verification is
necessary.

B. Loop Closing Verification

In this section, we describe the process to decide when an
unclear loop-closure candidate from BoW is accepted or re-
jected. This process is done by inferring on the data association,
or matching, between SURF points of the candidates’ scenes.
Here, we refer to SURF point as the pixel in the image where
the SURF feature was detected. The matching is carried out
using CRFs, a probabilistic undirected graphical model first de-
veloped to label sequence data [12]. We model the scene as two
graphs: The first graph (G3D ) models the near objects, i.e., those
pixels with dense information from the stereo, and, hence, with
3-D information [see Fig. 2(c) and (d)]. The second graph (GIm )
models the far objects from pixels without disparity information
[see Fig. 2(b)]. The nodes of the graphs are the SURF points
extracted before, and the edges of the graphs result from com-
puting the MST, according to the Euclidean distances between

the pixel coordinates in the case of GIm , and between the 3-D
metric coordinates in the case of G3D .

CRFs are a case of Markov random fields (and, thus, satisfy
the Markov properties) where there is no need to model the dis-
tribution over the observations [27], [28]. If the neighborhood of
a node A (i.e., all nodes with edges to A) in the graph is known,
the assignment to A is independent of the assignment to another
node B outside the neighborhood of A. By definition, the MST
connects points that are close in the measurement space, high-
lighting intrinsic localities in the scene. This implies first that
the associations are jointly compatible within neighborhoods,
and second that the compatibility is enforced and propagated
from neighborhood to neighborhood by the edge between them.

1) Model Definition: Instead of relying on Bayes’ rule to
estimate the distribution over hidden states x from observations
z, CRFs directly model p(x|z), the conditional distribution over
the hidden variables given observations. Due to this structure,
CRFs can handle arbitrary dependences between the observa-
tions. This makes them substantially flexible when using com-
plex and overlapped attributes or observations.

The nodes in a CRF represent hidden states, which are de-
noted x = 〈x1 ,x2 , . . . ,xn 〉; observations are denoted z. In our
framework, the hidden states correspond to all the possible as-
sociations between the n features in scene A and the m features
in scene B, i.e., xi ∈ {0, 1, 2, . . . ,m}, where the additional state
0 is the outlier state. Observations are provided by the sensors
(e.g., 3-D point clouds, appearance descriptors, or any combina-
tion of them). The nodes xi , along with the connectivity struc-
ture represented by the undirected graph, define the conditional
distribution p(x|z) over the hidden states x. Let C be the set of
cliques (fully connected subsets) in the graph of a CRF. Then,
a CRF factorizes the conditional distribution into a product of
clique potentials φc(z,xc), where every c ∈ C is a clique in the
graph, and z and xc are the observed data and the hidden nodes
in such clique. Clique potentials are functions that map variable
configurations to nonnegative numbers. Intuitively, a potential
captures the “compatibility” among the variables in the clique:
The larger a potential value, the more likely the configuration.
Using the clique potential, the conditional distribution over hid-
den states is written as

p(x|z) =
1

Z(z)

∏

c∈C
φc(z,xc) (3)

where Z(z) =
∑

x
∏

c∈C φc(z,xc) is the normalizing partition
function. The computation of this function can be exponential
in the size of x. Hence, exact inference is possible for a limited
class of CRF models only, e.g., in tree-structured graphs.

Potentials φc(z,xc) are described by log-linear combinations
of feature functions fc , i.e., the conditional distribution (3) can
be rewritten as

p(x|z) =
1

Z(z)
exp

{
∑

c∈C
wT

c · fc(z,xc)

}

(4)

where wc is a weight vector, which represents the importance of
different features to correctly identify the hidden states. Weights
can be learned from labeled training data.
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2) Inference: Inference in a CRF estimates the marginal dis-
tribution of each hidden variable xi , and can, thus, determine
the most likely configuration of the hidden variables x [i.e., the
maximum a posteriori (MAP) estimation]. Both tasks can be
solved using BP [29], which works by transmitting messages
containing beliefs through the graph structure of the model.
Each node sends messages to its neighbors based on the mes-
sages it receives and the clique potentials. BP generates exact
results in graphs with no loops, such as trees or polytrees.

3) Parameter Learning: The goal of parameter learning is
to determine the weights of the feature functions used in the
conditional likelihood (4). CRFs learn these weights discrim-
inatively by maximizing the conditional likelihood of labeled
training data. We resort to maximizing the pseudo-likelihood
of the training data, which is given by the product of all local
likelihoods p(xi |MB(xi)), where MB(xi) is the Markov blan-
ket of variable xi , which contains the immediate neighbors of
xi in the CRF graph. Optimization of this pseudo-likelihood is
performed by minimizing the negative of its log, resulting in the
following objective function:

L(w) = −
n∑

i=1

log p(xi |MB(xi),w) +
wT w
2σ2

w
. (5)

The rightmost term in (5) serves as a zero-mean Gaussian
prior, with variance σ2

w , on each component of the weight vector.
The training data are labeled using RANSAC [30] over the

best rigid-body transformation in 6 DoF [31] for G3D and over
the fundamental matrix for GIm , after SURF matching of two
consecutive scenes.

4) Feature Description: The CRF matcher can employ arbi-
trary local features to describe shape, image properties, or any
particular aspect of the data. Our features describe differences
between shape (only for G3D ) and appearance (for both graphs)
of the features. The local features that we use are the following.

Shape difference: These features capture how much the local
shape of dense stereo data differs for each possible association.
We use the geodesic, principal component analysis (PCA), and
curvature distance.

The geodesic distance, which is defined as the sum of Eu-
clidean distances between points in the MST, provides infor-
mation about the density of the neighborhood of each node of
the graph. It can be calculated for different neighborhoods rep-
resenting local or long-term shape information. Given points
zA,i , zB ,j , and a neighborhood k, the geodesic distance feature
is computed as

fgeo(i, j, k, zA , zB )

=

∥
∥
∥
∥
∥
∥

i+k−1∑

l=i

‖zA,l+1 − zA,l‖ −
j+k−1
∑

l=j

‖zB ,l+1 − zB ,l‖

∥
∥
∥
∥
∥
∥

(6)

where i and j correspond to the hidden state xi that associate
the feature i of the scene A with the feature j of the scene B.
The neighborhood k of xi in the graph corresponds to all the
nodes separated k nodes from xi . In our implementation, this
feature is computed for k ∈ {1, 2, 3}. A similar feature is used
to match 3-D laser scans in [32].

We also use PCA over the dense 3-D point cloud that is con-
tained within some spheres centered in the graph nodes [tex-
tured points in Fig. 2(d)]. The radius of these spheres is given
by the keypoint scale provided by the SURF extractor. The PCA
distance is computed as the absolute difference between the
variances of the principal components of a dense point cloud
zpca
A,i in scene A and zpca

B,j in scene B

fPCA(i, j, zpca
A , zpca

B ) =
∣
∣
∣z

pca
A,i − zpca

B,j

∣
∣
∣ . (7)

Another way to consider local shape is by computing the
difference between the curvatures of the dense point clouds.
This feature is computed as

fcurv (i, j, zc
A , zc

B ) =
∥
∥zc

A,i − zc
B ,j

∥
∥ (8)

where zc = 3s3
s1 +s2 +s3

, and s1 ≥ s2 ≥ s3 are the singular values
of the point cloud of each node.

Visual appearance: These features capture how much the
local appearance from the points in the image differs for each
possible association. We use the SURF distance. This feature
calculates the Euclidean distance between the descriptor vectors
for each possible association

fSURF(i, j, zdescr
A , zdescr

B ) =
∥
∥zdescr

A,i − zdescr
B,j

∥
∥ . (9)

Ramos et al. [14] also include as features the distances be-
tween the individual dimensions of the descriptor space. In our
training and validations data, we do not find a significant im-
provement in the accuracy of the labeling, and this greatly in-
creases the size of the weight vector.

All previous features described are unary, in that they only
depend on a single hidden state i in scene A (indices j and
k in the features denote nodes in scene B and neighborhood
size). In order to generate mutually consistent associations, it
is necessary to define features, over the cliques, that relate the
hidden states in the CRF to each other.

Pairwise distance: This feature measures the consistency be-
tween the associations of two hidden states xi and xj and ob-
servations zA,i , zA,j from scene A and observations zB ,k and
zB ,l in scene B

fpair(i, j, k, l, zA , zB )

= ‖‖zA,i − zA,j‖ − ‖zB ,k − zB ,l‖‖ . (10)

The zA and zB are in metric coordinates forG3D , and in pixels
for GIm .

5) Loop-Closure Acceptance: We use the CRF matcher
stage over the loop closing candidates provided by the BoW
stage. Then, we compute the negative log-likelihood Λ from the
MAP associations between the scene in time t, against the loop
closing candidate in time t′, Λt,t ′ , and the scene in t − γ, Λt,t−γ ,
γ = 1 s.

The negative log-likelihood Λ3D of the MAP association for
G3D provides a measure of how similar two scenes are in terms
of close range, and ΛIm for GIm in terms of far range. Thus, in
order to compare how similar the current scene is with the scene
in t′, Λt,t ′ , with respect to how similar the current scene is with
the scene in t − γ, Λt,t−γ , we use again a normalized similarity
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TABLE I
DATASETS

score as

ηG =
ΛG

t,t ′

ΛG
t,t−γ

(11)

where G indicates the graph.
Score ηG is compared with βG , a control parameter of the level

of similarity that we demand for (t, t − γ), where a smaller β
means a higher demand. By choosing different parameters for
near and far information, we can make a balance between the
weight of each in our acceptance.

IV. EXPERIMENTS

We evaluated our system with the public datasets from the
RAWSEEDS Project [33]. The data were collected by a robotic
platform in different static and dynamic environments. We used
the data corresponding to the stereo vision system with 18 cm of
baseline. These are black and white images (640 × 480 pixel)
taken at 15 frames/s with the Videre Design STH-DCSGVAR
system.

We used a static dataset depicting a mix of indoor and out-
door areas to perform the offline stages of our system. These
entail the training of the BoW vocabulary and the learning of
the CRF feature weights. We, then, tested the whole system
in three datasets: Static indoors, static outdoors, and dynamic
mixed. These three datasets along with the training one were
collected on different dates and in two different campuses. The
trajectory of the robot in the outdoor and mixed datasets has
some overlap in location with the dataset used for training; this
is not the case with the indoor dataset, which was collected in
a different campus. Refer to the RAWSEEDS Project [33] for
further details.

In addition, in order to evaluate the final configuration of
our system, we used the Malaga parking lot 6L dataset [34].
This is a public dataset with a different vehicle, stereo camera
(AVT Marlin F-131C model), and configuration (1024 × 768
pixel at 7.5 frames/s and 86 cm of baseline) than those in the
RAWSEEDS Project. Table I shows the information related to
these datasets.

In this experimental evaluation section, we first show the
effect of each system component in the loop detection stage in
Section IV-A. Then, in Section IV-B, we compare the use of
the Delaunay triangulation and MST during the CRF learning
process, as well as the influence of each feature proposed earlier.
Finally, we show the performance of our full system in the
aforementioned datasets in Sections IV-C–E.

Fig. 3. Precision and recall obtained by different techniques to select
loop candidates, with no further geometrical verification. (a) Indoor dataset.
(b) Outdoor dataset.

A. Loop Detection Stage

We used 200 images that are uniformly distributed in time
from the training dataset to create a BoW vocabulary tree with
k = 9 branching factor and L = 6 depth levels.

We started evaluating how each step of our loop detection
stage affects the correctness of the resulting matching candi-
dates. We compared the effectiveness of the score s and ηc

when used with both our proposed BoW algorithm (with tem-
poral consistency) and a simple BoW approach. This simple
technique consists in selecting the matching image that max-
imizes the score for a given query. In Fig. 3, we show the
precision–recall curves yielded by each configuration as vary-
ing the minimum required score. We can see that our BoW with
temporal consistency and ηc score obtained the highest recall
for 100% precision in the datasets.

Our BoW with temporal consistency outperforms the sim-
ple BoW approach. This is specially noticeable in the outdoor
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dataset, where the simple is not able to achieve 100% preci-
sion so that final results would be hardly reliable. The simple
BoW approach failed in this dataset because distant objects,
such as buildings, are visible in many images, causing incorrect
matches. Requiring temporal consistency reduces these cases
because it is unlikely to obtain several consecutive matches
with the same wrong place. This makes clear the usefulness of
the temporal consistency, as also reported earlier in [8].

Regarding the score, ηc attained higher recall for full precision
than the score s for both indoors and outdoors. In the indoor
dataset, the behavior of both scores with our BoW approach
with temporal consistency was similar, but the advantage of ηc

is clear with the simple approach, when just the match with the
maximum score is chosen. This shows that ηc is able to provide
more discriminative scores than s.

B. Loop Verification Stage

With the same 200 images used to train the BoW vocabulary,
we learned the weights for the CRF matcher. For this, we ob-
tained the SURF features from the right image in the stereo rig
and selected those with 3-D information from the dense point
cloud given by the stereo system. Then, we ran a RANSAC al-
gorithm over the rigid-body transformation between the images
at time t and t − δt . Since the stereo system has high noise in
the dense 3-D information, we selected δt = 1/15 s. The same
procedure was done over the remaining SURF features with no
3-D information, where we obtained the labels by calculating
the fundamental matrix between the images. These two steps re-
sulted in an automatic learning of the CRF labels. Although this
automatic labeling can return some outliers, the learning algo-
rithm has demonstrated being robust in their presence. We used
the optimization based on the BFGS quasi-Newton method pro-
vided by MATLAB to find the weights that minimized the neg-
ative log pseudo-likelihood. In both G3D and GIm , the weights
obtained suggested that the most relevant features in the CRF
matcher were fSURF and fpair .

Delaunay versus MST: In order to verify that the accuracy of
the data association using the CRFs, as proposed in this paper,
is not negatively affected by using MST instead of the Delaunay
triangulation, a tenfold cross-validation procedure was carried
out. For this, the pairs of images that were used for learning
the weights, both in 3-D and image, were randomly permuted
and equally divided into ten groups. Nine groups were used
for training, and the tenth was used for validation (training
and validation data are mutually exclusive). This process was
repeated ten times, and the evaluation metrics were computed
across folds for all the validation trials.

The tenfold cross validation was performed for G3D and
GIM , both with the Delaunay triangulation and the MST graph
structures. The results of the statistic test in the accuracy of
the matching with respect to the labeling given are shown in
Table II. The results in the validation data suggest that there
is not statistical evidence to favor the Delaunay triangulation
as graph structure for our CRF matching processes over the
MST. These results agree with the conclusion drawn by Quattoni
et al. [21].

TABLE II
MEAN AND STANDARD DEVIATION OF THE ACCURACY IN A TENFOLD

CROSS-VALIDATION TEST WITH BOTH GRAPH STRUCTURES: DELAUNAY

TRIANGULATION AND MST

TABLE III
ACCURACY IN TRAINING AND VALIDATION SETS FOR THE DATA ASSOCIATION

FOR BOTH GRAPHS, REMOVING ONE FEATURE AT A TIME

IN THE LEARNING STAGE

Relative importance of features: The influence of each feature
proposed in the CRF matching is studied in the learning stage.
The set used for learning was randomly divided into two 60–40%
groups: 60% for training and 40% for validation. The learning
was then carried out with all the features but one at a time.
The accuracy in data association is shown in Table III for both
graphs.

The accuracy obtained in each case shows that fSURF and
fpair are the most relevant features in the inference process.
However, in the validation set for G3D , we lose about 2% in
the mean accuracy of data association when we remove any
other feature. This is a short analysis about the influence of each
feature in the inference process that could be extended. For
instance, we could analyze many more combinations by adding
or removing more than one feature.

Although we have considered a certain set of features in our
system, CRFs are amenable to the use of different or additional
features that might become available through other sensors or
sensing modalities.

C. Full System

In this section, we analyze the performance of our detection
and verification stages put together. In addition, we compare our
system with the state-of-the-art technique FAB-MAP 2.0 [5].
The FAB-MAP software2 provides some predefined vocabular-
ies. We used the FAB-MAP indoor vocabulary for our indoor
dataset and the FAB-MAP outdoor vocabulary for the mixed and
outdoor datasets. This technique has a set of parameters to tune
in order to obtain the best performance in each experiment. We
give a short description of the parameters in the Appendix (for
further details, see [15]). We chose the following two parameter
sets in order to obtain different results (see Table IV).

2The software and vocabularies were downloaded from http://www.robots.ox.
ac.uk/∼mobile/
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TABLE IV
FAB-MAP 2.0—PARAMETERS FOR THE EXPERIMENTS

1) The default parameter set that is provided by the authors.
The probability threshold p is taken as 0.99, considering
obtaining as few false positives as possible. When we use
this configuration, we check the results yielded by FAB-
MAP for geometrical consistency.

2) A modified parameter set is tuned to obtain the maxi-
mum possible recall at full precision. The idea behind
of this tuning is to use as place recognition system only
the FAB-MAP 2.0, without geometrical verification. For
the outdoor dataset, this parameter set is the same as the
default set, only changing the probability threshold.

We filter the results of FAB-MAP 2.0 when using the de-
fault configuration with a GC. Since the last available version
of the FAB-MAP software does not implement the GC de-
scribed by Cummins and Newman [5], we implemented a GC
based on epipolar geometry. This epipolar constraint consists
in computing the fundamental matrix (by using RANSAC and
the 8-point algorithm [35]) between two matched images. This
test is passed if a well-conditioned fundamental matrix can be
obtained.

First, we compared the correctness of our BoW detector with
that of FAB-MAP 2.0, both with no geometrical verification.
Fig. 4 shows the precision–recall curves resulting in the three
RAWSEEDS datasets. We obtained them by varying the mini-
mum confidence value expected for a loop-closure candidate of
BoW α− (with fixed minimum confidence level for a trusted loop
closure α+ = 0.6), and the probability of acceptance p of FAB-
MAP 2.0. We can observe that the curve of BoW dominated
those of FAB-MAP 2.0, even without GC. As was expected,
when we choose carefully the parameters of FAB-MAP 2.0, the
results that we obtain are much better than when using the con-
figuration by default. This is specially noticeable in the indoor
dataset, where there were false positives in all the cases with the
default parameters. This is due to the several similar-looking
corridors and libraries this dataset presents.

Later, we added the geometrical verification stage to BoW and
FAB-MAP 2.0 and compared the results of our system (BoW
with CRF matching) and other approaches: FAB-MAP 2.0 with
GC, and BoW with GC. We show an example of the results
obtained in the indoor dataset in Fig. 5. These were obtained
by varying α− and p, with α+ = 0.6. For our system, we set
the β parameters of the CRF matcher in order to obtain 100%
precision. We performed this test to compare recall with the
state of the art. In view of results shown in Fig. 4, we selected
the working value α− = 0.15. Since these datasets are fairly

heterogeneous, we think these α values can work well in many
situations. It might depend on the vocabulary size, though. All
the parameters used are shown in Table V.

The results of FAB-MAP 2.0 over the datasets are shown in
Figs. 6(a), 7(a), and 8(a) for the default set of parameters plus
the GC with the epipolar constraint, and in Figs. 6(b), 7(b), and
8(b) for the modified set of parameters. Note that FAB-MAP
2.0 with the modified configuration does not need geometrical
verification, since we selected the parameters aiming to obtain
no false positives. Again, as expected with the modified param-
eters, FAB-MAP 2.0 obtained greater recall at full precision
than with the parameters by default, although some loop clo-
sures were not detected. We detail some cases: In the indoor
dataset [see Fig. 6(a)], the big area on the beginning of the map
(start–end) is especially important in the experiment because
if no loop is detected in that area, a SLAM algorithm could
hardly build a correct map after having traversed such a long
path (around 300 m). In outdoors, as shown in Fig. 7(a) and (b),
the biggest loop was missed in the starting and final point of the
experiment, in the marked area (O1) in the map. An example of
a false negative in this area is shown in Fig. 10(a). This dataset
is challenging due to the illumination and blurring present in
the images, and this entails an added difficulty for FAB-MAP
since the significant overlap of distant objects between consec-
utive images decreases its discriminative ability [36]. For the
experiment in the dynamic mixed environment, important loop
closures were missed again, e.g., M1 and M2 areas in Fig. 8(a).
Examples of those false negative cases are shown in Fig. 10(b)
and 10(c). In the false negative cases that we show in Fig. 10,
both configurations of FAB-MAP 2.0 reported a probability of
new place greater than 0.999.

In order to show the improvements of our loop-closure verifi-
cation stage, we checked the candidates given by BoW with the
same GC technique that we described previously. The results
are shown in Figs. 6(c), 7(c), and 8(c). In Fig. 6(c), all the loop-
closure areas were detected but with too many false positives
due to the perceptual aliasing (see Fig. 9); this is disastrous for
any SLAM algorithm. In the outdoor and mixed datasets, the
precision was 100%, sacrificing recall and, more importantly,
the detection of loop-closure areas. As we can see in Fig. 5, we
can tune the parameters of BoW + GC to attain full precision,
but at the cost of sacrificing recall. This also makes the perfor-
mance of this system not good and stable across environments
and conditions.

The results of our system over the datasets are shown in
Figs. 6(d), 7(d), and 8(d), and the comparative statistics of all
experiments is made in Table VI. In the indoor experiment, we
can detect all the loop-closure areas at 100% precision. In the
outdoor and mixed datasets, we keep full precision, higher recall
level, and most of the loop-closure areas detected.

Our system detected successfully the loops in Fig. 10 as true
positives. The three cases shown were verified by the CRF stage.
Our CRF matcher reports the following η scores: In O1 [see
Fig. 10(a)], η3D = 1.24 and ηIm = 1.37; in M1 [see Fig. 10(b)],
η3D = 0.4 and ηIm = 1.67; and in M2 [see Fig. 10(c)], η3D =
1.29 and ηIm = 1.24. Note that with the β parameters for in-
doors, such cases would be rejected.
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Fig. 4. Precision and Recall without CRF verification or epipolar constraint with BoW and FAB-MAP 2.0 with two parameter sets. (a) Indoor dataset.
(b) Outdoor dataset. (c) Mixed dataset.

Fig. 5. Precision–recall curves for the indoor dataset. In each curve, the work-
ing point is marked, as in Tables IV and V. We also show our BoW stage with
GC as verification. The GC checks the epipolar constraint with RANSAC. Note
that FAB-MAP 2.0 with the modified configuration needs no GC.

Furthermore, our CRF matcher is robust against perceptual
aliasing. For instance, the false positives obtained with the GC
in the indoor sequence was, correctly, discarded (see Fig. 9). In
the case of F1, our CRF matcher rejected it by both graphs G3D
and GIm with η3D = 1.45 and ηIm = 1.79 [see Fig. 9(a)]. In
F2, our CRF matcher rejected it by the far information coded in
GIm , with η3D = 0.95 and ηIm = 1.47 [see Fig. 9(b)].

With the parameters by default of FAB-MAP 2.0, we cannot
obtain full precision in the indoor dataset, even with p = 0.99.
As explained in Fig. 9(c), we have to verify the loop closures
detected with the GC to attain full precision, obtaining lowest
recall in the three datasets. With the modified configuration, we
tuned the parameters of FAB-MAP 2.0, aiming to maximize the
precision. With this approach, we obtained 100% precision in
the indoor, outdoor, and mixed datasets with 30.6% recall and
2/6 loop areas detected, 3.3% recall and 3/9 areas, and 19.9%
recall and 3/8 areas, respectively.

TABLE V
OUR SYSTEM—PARAMETERS FOR THE EXPERIMENTS

We also tried to tune the parameters of FAB-MAP to maxi-
mize recall without paying attention to the precision, which can
be improved later by using the geometrical constraint. With that
approach, we could attain 100% precision in the outdoor and
mixed datasets, but false positives remained indoors, obtaining
75% precision only. As in the case of BoW + GC shown in
Table VI, the GC was not able to filter out all the incorrect
loop candidates suffering from perceptual aliasing. In the mixed
dataset, the recall obtained, 15%, was lower than that observed
with the other FAB-MAP 2.0 configurations. The same situation
occurred outdoors, except for unrealistically low thresholds, like
p = 0.3, that yielded a recall up to 5%.

In light of these results, we can see that our verification stage
is better suited to discriminate near–far information for decision
making.

D. Timing

The online system runs at 1 frame/s. We have a research
implementation in C++ using the OpenCV library. In Table VII,
we show the average and maximum times for each stage of the
system on a 2.3-GHz IntelCore i3 CPU M350 and 4-GB RAM.
For the whole system, the average and the maximum times were
computed only when all the stages were executed. Note that the
maximums for each stage happened in different cases. That is
more evident in the inference process forG3D andGIm : When an
image provides more 3-D points, less background information
remains. In an image, the number of nodes and hidden states
between G3D and GIm are complementary. The execution time
reported for the CRFs in the graphs includes computing the
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Fig. 6. Loops detected by each of the methods in the indoor dataset. Black lines and triangles denote the trajectory of the robot, light green lines denote actual
loops, deep blue lines denote true loops detected, and light red lines denote false loops detected. In Fig. 9, we show the false positive cases F1 and F2. (a) FAB-MAP
2.0 (default) + GC. (b) FAB-MAP 2.0 (modified). (c) BoW + GC. (d) Our system.

Fig. 7. Loops detected by each of the methods in the outdoor dataset. Black lines and triangles denote the trajectory of the robot, light green lines denote actual
loops, and deep blue lines denote true loops detected. In Fig. 10, we show the false negative case O1. (a) FAB-MAP 2.0 (default) + GC. (b) FAB-MAP 2.0
(modified). (c) BoW + GC. (d) Our system.

Fig. 8. Loops detected by each of the methods in the mixed dataset. Black lines and triangles denote the trajectory of the robot, light green lines denote actual
loops, and deep blue lines denote true loops detected. In Fig. 10, we show the false negative cases M1 and M2. (a) FAB-MAP 2.0 (default) + GC. (b) FAB-MAP
2.0 (modified). (c) BoW + GC. (d) Our system.

MSTs, the corresponding features, and the inference for each
one. The time for the whole system includes computing the 3-D
point cloud from the disparity map and writing and reading the
SURF descriptors and point clouds on disk.

E. No Hands Test

After obtaining the best results in the different datasets of
the RAWSEEDS Project comparatively, we tested our system

over a different dataset, i.e., the Malaga parking lot 6 [34]. As
before, we carry out the place recognition task at 1 frame/s. This
dataset, as the indoor one described earlier, was collected in a
completely different location from the one where our training
images were acquired. The main challenge is to test our system
with the configuration, already, used in the previous experiments
on a different vehicle and stereo camera system.

For that, we kept the same vocabulary and CRFs’ weights,
as well as the parameters used in the outdoor dataset, as shown
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Fig. 9. (a) and (b) False positive cases obtained by BoW plus GC in the indoor
dataset. (c) Two different corridors make FAB-MAP 2.0 produce a false positive
(p = 0.9989) with the default parameters. However, it is correctly rejected by
the GC.

TABLE VI
RESULTS FOR RAWSEEDS DATASETS

in Table V. In order to compare the results, we ran FAB-MAP
2.0 with the configuration that obtained a better result for the
outdoor experiment, as well as with the default parameter set
p = 0.99, as well as filter the results with the epipolar constraint
GC, as before.

The results over the Malaga parking lot are shown in Fig. 11
and Table VIII. With no changes in our system, we attain full
precision despite the increased speed of this vehicle. Using FAB-
MAP with the configuration for best performance in the outdoors
experiment, we can obtain higher recall here, but precision falls

Fig. 10. False negatives in the outdoor and mixed datasets that our method can
successfully detect but FAB-MAP 2.0 misses. FAB-MAP 2.0 sets query image
of case (a) as a new place with a probability of 0.99947, of (b) with 0.99997
and 0.99902 with the default and modified set of parameters, respectively, and
(c) with 1.0 and 0.9993. These scenes correspond to the biggest loops in the
trajectories.

TABLE VII
COMPUTATIONAL TIMES FOR OUR SYSTEM (IN SECONDS)

down to 42%, unacceptable for any SLAM system. If we use
the configuration that exhibited bad performance in recall in
the outdoors experiment, FAB-MAP 2.0 default plus GC attains
higher recall compared with our system (68% versus 42%);
both methods find four out of five loop-closure zones. This
makes our system more stable across different environments
and conditions. We show in Fig. 12 two examples of those loops
found by one and not by the other: Ma1 and Ma2.

Note in Fig. 11(c) that FAB-MAP alone has bad performance.
It returns a large number of detections, more than half false
loops. The increase in the number of alarms as compared with
the RAWSEEDS experiments is due to the higher speed of the
vehicle, 2.6 m/s versus 0.8 m/s (see Table I). This results in
less overlap between consecutive processed frames, increasing
the maximum values of the probability distribution over the
sequence. Still, it is susceptible to perceptual aliasing due to
overlapping in the far information. This is corrected with GC
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Fig. 11. Loops detected by our system and FAB-MAP 2.0 in the Malaga parking lot dataset. Black lines and triangles denote the trajectory of the robot; light
green lines denote the actual loops. (a) BoW, high confidence detections (light blue) are accepted and unclear detections (magenta) are subject to verification.
(c) FAB-MAP 2.0, detections with p =0.99, (default) are the dashed light blue; detections with p =0.96 (modified) are in magenta. (d) Detections with p =0.99,
which are verified with GC. In (b) Our system and (d) FAB-MAP (default) + GC, deep blue lines denote true loops detected.

TABLE VIII
RESULTS FOR MALAGA DATASET

Fig. 12. Cases marked in 11(b) and 11(d) from Malaga dataset. These corre-
spond to loops found by one and not by the other method.

because this dataset does not suffer from strong perceptual alias-
ing in near information, in contrast with the indoor dataset (see
Fig. 9).

Our loop closing detection stage discriminates better, still
detecting the most of loop-closure zones [see Fig. 11(a)]. As
expected, our verification stage, correctly, decides over the un-
clear cases [magenta lines in Fig. 11(a)]. The final result of our
full system is shown in Fig. 11(b).

V. CONCLUSIONS AND FUTURE WORK

We have presented a system that combines two powerful
matching algorithms, i.e., BoW and CRFs, to robustly solve the
place recognition problem with stereo cameras. We have eval-
uated our place recognition system in different environments
(indoor, outdoor, and mixed) from public datasets. In all cases,
the system can attain 100% precision (no false positives) with
higher recall than the state of the art (less false negatives), and
detecting the most (especially important) loop-closure zones.

No false positives means that the environment model will
not be corrupted, and less false negatives means that it will be
more precise. The important lesson that we can learn from this
is that we must always apply a verification stage over detected
loops based on appearance. As we have seen in situations of
perceptual aliasing, our verification stage with the CRF matcher
is more robust than the GC using the epipolar constraint.

As mentioned in [36], the effectiveness of FAB-MAP de-
creases when the camera looks forward, because FAB-MAP
models the environment as “a collection of discrete and disjoint
locations” [15]. However, in our experiments, the stereo cam-
era system faces forward, and distant objects (e.g., buildings in
outdoor scenes) persist for many frames, making scenes overlap
and be less discriminative. This causes the matching probability
mass of FAB-MAP to be flattened over the scenes. It is easier
for our system to overcome those cases because our normalized
similarity scores (ηc , η3D , ηIm ) to match acceptance are com-
puted at each frame and take into account the similarity between
consecutive frames.

By jointly using the CRF-matching algorithm over visual near
3-D information (here provided by stereo vision but also pos-
sible with range scanners, etc.) and far information, we have
demonstrated that challenging false loop closures can be re-
jected. Furthermore, CRF-matching is also able to fuse any
other kind of information, such as image color, with ease.

Our place recognition system is able to run in real time,
processing scenes at one frame/s. In most cases, after extracting
the SURF features (maximum 300 ms), our system only takes
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11 ms to detect if there are possible loop closures, and 300 ms
to check them when necessary. We are considering the use of
cheaper feature extractors that can speed up this process without
a negative impact in precision and recall.

In our experiments, the best β thresholds for acceptance of
the CRF matching turned out to be clearly different for indoor
and outdoors scenarios. These parameters will also depend on
the velocity of motion, mainly because we use images from the
previous second as reference in the comparisons. Incorporating
the computation of these thresholds as part of the learning stage
would also make the system more flexible. Nevertheless, our
system has demonstrated a stable performance, always at full
precision, for different environments, cameras, and conditions.
Systems such as simple BoW or FAB-MAP, both aided by GC,
can obtain good results if adequately tuned in each case. How-
ever, the same configuration can result in very poor performance
in others.

An important line of future work is addressing the place
recognition problem over time. Our system performs well in
multiday sessions using parameters learned in different months,
and this is also true of alternative systems such as FAB-MAP.
The environment can also change during the operation in the
same session (see Fig. 10). Our algorithm is also able to detect
places revisited at different times of day, while alternative sys-
tems sometimes reject them in order to maintain high precision.

Several extensions are possible for operation in longer periods
of time. The vocabulary for the BoW has shown to be useful in
different environments, which suggests that a rich vocabulary
does not require frequent updates. The learned parameters in the
CRF stage can be relearned in sliding window mode depending
on the duration of the mission. The system will then be able to
adjust to changing conditions. In cases of periodical changes,
such as times of day or seasons, we will need to maintain several
environment models and select the most appropriate for a given
moment of operation.

APPENDIX

FAST APPEARANCE-BASED MAPPING

PARAMETERS DESCRIPTION

The parameters that we have modified are the following ones
(for further details, see [5] and [15]).

1) p: Probability threshold. The minimum matching proba-
bility required to accept that two images were generated
at the same place;

2) P (obs|exist): True positive rate of the sensor. Prior prob-
ability to detect a feature given that it exists in the location;

3) P (obs|¬exist): False positive rate of the sensor. Prior
probability to detect a feature given that it does not exist
in the location;

4) P (newplace): Probability for new place. Prior probability
to determine whether the last image is a new place;

5) σ: Likelihood smoothing factor. Factor for smoothing the
likelihood values through consecutive places;

6) Motion Model: Model Motion Prior. This biases the match-
ing probabilities according to the expected motion of the
robot. A value of 1.0 means that all the probability mass

goes forward, and 0.5 means that probability goes equally
forward and backward;

7) Blob Resp. Filter: Blob Response Filter. All the SURF
points with a blob response below this threshold are
discarded;

8) Dis. Local: Disallow N local matches. Set the prior to
be zero on the last N places. We use the same parameter
in our system during the BoW stage for not producing
matches against the last N scenes.
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