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Abstract A long‐standing challenge in studying the global carbon cycle has been understanding the factors
controlling inter–annual variation (IAV) of carbon fluxes, and improving their representations in existing
biogeochemical models. Here, we compared an optimality‐based model and a semi‐empirical light use
efficiency model to understand how current models can be improved to simulate IAV of gross primary
production (GPP). Both models simulated hourly GPP and were parameterized for (a) each site–year, (b) each
site with an additional constraint on IAV (CostIAV ), (c) each site, (d) each plant–functional type, and (e)
globally. This was followed by forward runs using calibrated parameters, and model evaluations using Nash–
Sutcliffe efficiency (NSE) as a model‐fitness measure at different temporal scales across 198 eddy‐covariance
sites representing diverse climate–vegetation types. Both models simulated hourly GPP better (median
normalized NSE: 0.83 and 0.85) than annual GPP (median normalized NSE: 0.54 and 0.63) for most sites.
Specifically, the optimality‐based model substantially improved fromNSE of − 1.39 to 0.92 when drought stress
was explicitly included. Most of the variability in model performances was due to model types and
parameterization strategies. The semi‐empirical model produced statistically better hourly simulations than the
optimality‐based model, and site–year parameterization yielded better annual model performance. Annual
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model performance did not improve even when parameterized using CostIAV . Furthermore, both models
underestimated the peaks of diurnal GPP, suggesting that improving predictions of peaks could produce better
annual model performance. Our findings reveal current modeling deficiencies in representing IAV of carbon
fluxes and guide improvements in further model development.

Plain Language Summary Terrestrial vegetation assimilates and releases carbon dioxide through
photosynthesis and respiration, respectively, and their net magnitude determines if vegetation can be a sink or
source of carbon dioxide. We are interested in understanding what controls the inter–annual variability (IAV) of
gross primary production (GPP) which represents photosynthesis, and how their representations can be
improved in models simulating GPP. Here, we considered an optimality‐based model that can be applied
equally well globally, and a data‐driven semi‐empirical model. We found both models better simulated diurnal
and seasonal cycles than the IAV of GPP. Such differences probably stem from model parameters, as critical
ecosystem functions they represent may not be well‐constrained or model structures may lack critical
representations via inaccurate simulation of peak diurnal GPP and drought stress. The IAV of GPP was
comparatively better simulated if model parameters were fine‐tuned with data from specific years. Another
challenge is that IAV of GPP can also be observed due to disturbances, such as forest fire, and human
management besides natural causes, which were also not represented in models. Our results suggest that
learning the variability of model parameters over the years can be key to better simulation of the IAV of GPP.

1. Introduction
The global carbon cycle is an important biogeochemical cycle, which affects the climate on Earth (Schimel, 2001).
Terrestrial vegetation, which covers a large part of the land area, assimilates atmospheric carbon dioxide (CO2)
through photosynthesis. Simultaneously, CO2 of similar magnitude is released into the atmosphere through
terrestrial ecosystem respiration (TER). The net balance of these two fluxes determines if terrestrial ecosystem acts
as a sink or source of carbon (Ruehr et al., 2023). Terrestrial gross primary production (GPP) can be defined as
“apparent” photosynthesis, that is, the rate at which the vegetation assimilates carbon through photosynthesis
minus the loss of carbon only through photorespiration (Plummer, 2006; Wohlfahrt & Gu, 2015). GPP can be
estimated directly using gas exchange measurements at the leaf and canopy scales (Jez et al., 2021), and indirectly
throughmeasurements of net ecosystem exchange (NEE) using the eddy covariance (EC) method at the ecosystem
or landscape scale (D. D. Baldocchi, 2003). Though the GPP estimated using the ECmethod represents “apparent”
photosynthesis, its magnitude can be closer to “true” photosynthesis which is the actual amount of carbon
assimilated due to overestimation of daytime mitochondrial respiration in flux–partitioning algorithm (Reichstein
et al., 2005; Wohlfahrt & Gu, 2015). Furthermore, a large variety of biogeochemical models have been developed
to simulate and upscale carbon fluxes from local to regional or global scales to better describe the global carbon
cycle (Burton et al., 2023; Dannenberg et al., 2023; Nelson et al., 2024; Xiao et al., 2014).

Biogeochemical models that simulate GPP can be of different types and complexities. On the one hand, process‐
based models, such as the models used in the Trends in Net Land‐Atmosphere Carbon Exchange (TRENDY)
project, mechanistically describe the physiological processes involved in photosynthesis or plant respiration
(Sitch et al., 2015). Their ability to capture a certain process largely depends on the underlying model structure
and calibration of model parameters (Anav et al., 2015). Similar, but simpler than fully mechanistic approaches
are the models constructed on the concept of light use efficiency (LUE), which treat a canopy usually as one big
leaf, but where the GPP is calculated as the product of the absorbed photosynthetically active radiation (aPAR)
and LUE (Monteith, 1972). These models are semi‐empirical as they combine both the simplicity of empirical
models and the theoretical mechanisms that underpin process‐based models (J. Chen, 2021; Running et al., 2000;
Yuan et al., 2007). On the other hand, data–driven empirical models (Jung et al., 2011, 2020) are largely based on
learning regression functions to establish a general relation between input data, such as meteorology and
ecosystem properties, and the desired output, such as GPP. These models' performance largely relies on good
quality training data and generally lacks comprehensive representations of long‐term forcing functions.

Considering the methodological diversity and differences in GPP estimates, various model benchmarking and
model–data integration experiments have been designed to compare approaches and to unveil drivers of
ecosystem functioning for various climate–vegetation types, across spatial and temporal scales. A long‐standing
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challenge, and still a key area of interest, lies in understanding the factors controlling inter–annual variability
(IAV) of the various carbon fluxes (D. Baldocchi et al., 2018). The challenge presents itself from the mechanistic
to the more data–driven approaches and contests the dominant role of meteorology in determining the IAV of
ecosystem fluxes (Richardson et al., 2007). At the local ecosystem level, J. Wu et al. (2012) looked at the IAV of
net ecosystem fluxes by fitting the parameters of a semi‐empirical model at shorter timescales to capture the
seasonality, but also annual variability of model parameters. The approach allows testing the role of changes in
ecosystem functioning in the IAV of carbon fluxes (Richardson et al., 2007). They concluded that climate and
parametric variability control IAV of ecosystem fluxes at shorter and longer timescales, respectively.

Simultaneously, Fatichi and Ivanov (2014) highlighted the role of climate when using 200 years of hourly
synthetic meteorological data to force an ecohydrological model to find that the random occurrence of favorable
weather conditions at certain hours of the day can be a major predictor of IAV of net primary production (NPP).
This statistical relationship was corroborated by Zscheischler et al. (2016) using actual flux data from EC sites
from forested areas in North America, where the 91st percentile values of hourly GPP flux, that is, peak GPP
values, substantially contributed to the IAV of GPP flux. These studies highlight the correlation between the
distribution tails and the IAV in EC fluxes. However, there is no robust pattern across sites nor do they challenge
there is no variability in ecosystem function.

More recently, a model selection study compared an ensemble of 5600 possible semi‐empirical LUE model
structures to find a global best model structure (Bao, Wutzler, et al., 2022). The best LUE model was calibrated at
a daily timescale per site and simulated GPP fluxes across the FLUXNET EC tower sites (Pastorello et al., 2020),
considering the effect of various environmental conditions on maximum LUE through partial sensitivity func-
tions. Though the best global model performed similarly to the best model selected for each site at the daily
resolution, it failed to represent the variability of annually aggregated GPP fluxes for 74% of sites, that is, the
Nash‐Sutcliffe efficiency (NSE) of model performance (Nash & Sutcliffe, 1970) was below or equal to 0.5. This
may be attributed to (a) the use of daily data in the study, as the model had no information on the favorable
conditions that occurred in a diurnal cycle and failed to simulate the diurnal GPP peaks which had a major in-
fluence on IAV (Bao, Wutzler, et al., 2022; Fatichi & Ivanov, 2014; Zscheischler et al., 2016), (b) the assumption
of invariance in ecosystem function, that is, values of model parameters remain constant for all site–years in a site,
and (c) the need to explicitly consider different timescales in the cost function (Desai, 2010).

In contrast, Mengoli et al. (2022) proposed an optimality‐based framework (Stocker et al., 2020; Wang
et al., 2017), that is, optimality‐based P‐model which simulates GPP following optimality principle and differ-
entiates between instantaneous and acclimated photosynthetic responses. This model demonstrated its capability
in simulating half‐hourly GPP dynamics at 10 EC sites, covering four vegetation classes for limited time periods.
Whereas, the performance of this modeling framework across sites representing diverse climate–vegetation
features and various temporal resolutions were not evaluated. Though this modeling framework considers the
effect of temperature, vapor pressure deficit (VPD), atmospheric CO2 concentration, solar radiation, and the
fraction of absorbed photosynthetically active radiation (fAPAR), it does not explicitly consider the effect of
drought stress on GPP variability at sub‐daily scale. However, numerous studies (Anderegg et al., 2015; Assal
et al., 2016; Kannenberg et al., 2019; Reichstein et al., 2013; C. Wu & Wang, 2022) in the past highlighted the
effect of climatic extremes, such as drought on the reduction of GPP through observations and simulations, as well
as ecosystems can temporarily act as a carbon sink during drought (Ciais et al., 2005). Moreover, various studies
(Müller & Bahn, 2022; Orth et al., 2020; Seneviratne et al., 2012; X. Yu et al., 2022) also found that the drought
can also impose a prolonged legacy effect on seasonal and annual dynamics of GPP and recovery days can vary
between ecosystems (Z. Yu et al., 2017). Recently, Mengoli et al. (2023) proposed an improved version of this
model by incorporating climatic aridity and calculating a scaling factor for GPP. However, in the improved
model, the scaling factor could only be applied to improve the simulation of daily GPP.

The challenge to correctly reproduce IAV is also apparent on a global scale as Anav et al. (2015) found a high
level of disagreement in annual GPP estimates from diverse global GPP modeling frameworks. These discrep-
ancies highlight that site‐level limitations in simulating IAV propagate to larger scales where additional mech-
anisms play a role, such as natural or anthropogenic disturbances and land–use land cover change (Bultan
et al., 2022; McGuire et al., 2001).

As highlighted above, the major persistent drawbacks in most of the past studies were the limited implementation
of either model structures or parameterization approaches and the evaluation of models for limited sites and
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timescales. To address this, here we explore ecosystem‐level estimations of GPP flux to systematically investigate
how various factors can be linked to describing the IAV of GPP flux, such as peak values of diurnal GPP, climatic
conditions, and variables represented by model parameters, which are usually hard to measure directly and can be
difficult to interpret even when various modeling approaches are adopted. We tested the impact of the constant or
time–varying parameterizations and evaluated their performances in capturing GPP variability at various tem-
poral aggregation scales, especially at the annual scale. We also tested the hypothesis that observational con-
straints complement and enhance theoretically grounded process formulations and that improving the model
simulations at the sub‐daily scale improves the prediction of IAV of GPP. Additional analysis on parameter
inversion approaches and cost functions, as well as on parametric variability are treated in a companion paper (De,
Brenning, et al., 2025). In this study, we aim to answer:

1. How well does an optimality‐based model perform compared to a semi‐empirical model across various
temporal scales with different model parameterization approaches?

2. What factors influence the variability of model performance at different temporal scales?
3. Can the performance of an optimality‐based model be improved if drought stress is included?
4. Howmuch are the differences in model performance between an optimality‐based and a semi‐empirical model

related to variations across plant–functional types (PFT) and climate–vegetation types?
5. Does improved simulations of peak diurnal GPP lead to improved simulations of IAV of GPP?

2. Methods and Data
In this study, we focused on parameterization of both a semi‐empirical model, at daily and sub‐daily scales, and an
optimality‐based model at a sub‐daily scale using various parameterization strategies consisting of different
subsets of data and cost functions (Figure 1). Thereafter, we performed forward runs of models with calibrated
parameters at the temporal resolution of model parameterization data and evaluated model performances at
different temporal aggregations (Figure 1). The following sections describe each methodological step in a detailed
manner.

2.1. Models

2.1.1. Optimality‐Based Model: P‐Model of Mengoli

Stocker et al. (2020) proposed the first version of the P‐model based on theories formulated byWang et al. (2017),
which unified the classic Farquhar–von Caemmerer–Berry model (Farquhar et al., 1980) with the simplified
formation of big leaf LUEmodels (Monteith, 1972). The probable reasons behind using the “P” in the P‐model are
(a) “P” stands for photosynthesis, (b) classically, GPP used to be denoted by “P” (Monteith, 1972), and (c) the
initial of the lead author (Prentice et al., 2014) who formulated the theories behind the model starts with “P” (B. D.
Stocker, personal communication, 06 May 2024). The underlying equations of the P‐model were formulated
based on the optimality principle (Prentice et al., 2014) and the coordination principle (J.‐L. Chen et al., 1993;
Maire et al., 2012). According to the optimality principle, plants aim to optimize the cost of transpiring water to
assimilate CO2 through the stomata. In the P‐model, the ratio of leaf internal and ambient CO2 concentration
(χ = Ci/Ca) is calculated for which the above‐described cost is minimal, and the sensitivity (ξ) of χ to VPD is
predicted. The coordination principle describes the achievement of equilibrium between the maximum rate of
carboxylation (Vcmax) and electron transport (Jmax) by the plants.

Mengoli et al. (2022) adapted the first version of the P‐model to simulate half‐hourly GPP dynamics. Here, we
applied this same model at an hourly scale and called it the Phr model. The major improvement in this version was
defining an explicit differentiation between instantaneous (such as RuBisCo and light‐limited carbon assimila-
tion), and photosynthetic responses (Vcmax, Jmax, and ξ) which acclimate over time in response to environmental
conditions. One of the important aspects of this Phr model is that the parameters associated with cellular
biochemistry acclimate to favorable conditions during the day over a period of time or acclimation time (At). In
this study, we considered the favorable condition as the average of three hourly input data points in the middle of
the day from 11:00 (hh:mm) LT, 12:00 (hh:mm) LT, and 13:00 (hh:mm) LT. A rolling mean of the average
condition from mid‐day was taken over the At, which was used to calculate optimal values of the model pa-
rameters, as described in Mengoli et al. (2022). The value of At was calibrated as a parameter in our study
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(Table 1). We chose the mid‐day and rolling mean approach from Mengoli et al. (2022) as it produced the best
results in their evaluations of the Phr model at the half‐hourly scale.

One of the known limitations of the Phr model is its tendency to overestimate GPP fluxes in water–limited
ecosystems, as no explicit representation of soil moisture conditions was included (Mengoli et al., 2022,
2023). In order to relax such drawbacks here we used the water availability index (WAI) as a proxy of soil
moisture (Bao, Wutzler, et al., 2022; Boese et al., 2019; Tramontana et al., 2016). TheWAI represents the spatial
and temporal dynamics in plant available water based on a simple hydrological model where storage is controlled
by precipitation and evapotranspiration. We further introduced a drought stress function that additionally scaled
the GPP estimates of the Phr model, and we denoted this new version as the PWhr model. We calibrated 10 pa-
rameters in the PWhr model in which nine parameters were in the hydrological model and the drought stress function
(Table 1). Further details on the implementation of the PWhr model, along with the drought stress function can be
found in Text S1 and S2, Figures S1 and S2 of Supporting Information S1.

2.1.2. Semi‐Empirical Model: Bao Model

Vegetation stores energy from absorbed solar radiation in the form of biochemical energy through photosynthesis.
The efficiency of the photosynthetic apparatus in performing this energy conversion is termed as light use effi-
ciency (ε). In a LUEmodel, GPP is calculated as the product of instantaneous ε, photosynthetic photon flux density
(PPFD), and the fraction of incident photosynthetically active radiation that is absorbed by vegetation (f APAR).
Instantaneous ε reaches its maximum, that is, εmax, when all environmental factors are optimal for photosynthesis.

Figure 1. Graphical representation of the model–data–integration workflow adopted in this study. The blue box indicates the
preparation of forcing and observation data at hourly and daily scales for each site, as well as defines the initial value of
parameters and their range by surveying literature. Then five different model parameterization tasks were performed for the
light use efficiency (LUE) model from Bao, Wutzler, et al. (2022) at hourly scale (Baohr model) and at daily scale (Baodd
model), P‐model from Mengoli et al. (2022) at hourly scale (Phr model), and Phr model with an explicit drought stress function
(PWhr model) using the Covariance Matrix Adaptation Evolution Strategy (CMA‐ES) (Hansen & Kern, 2004), which is indicated
by the red box. The cost function (f ) is a function of observed (y) and simulated (x) gross primary production. The green box
denotes that the whole workflow was applied for the 198 sites from the FLUXNET2015 data set (Pastorello et al., 2020). The
dotted orange box highlights the focus of this study. The parameter dynamics is explored in detail in a companion paper (De,
Brenning, et al., 2025). The figure was created in BioRender. R. De (2025).
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Instantaneous ε is determined as the product between εmax and the partial sensitivity functions (f X) for the different
environmental factors controllingGPP, such as air temperature (T),VPD, available soilwater supply (W), absorbed
photosynthetic photon flux (L = PPFD × f APAR), the cloudiness index (CI, Table A1), and atmospheric CO2

concentration (Bao, Wutzler, et al., 2022; Horn & Schulz, 2011; Mäkelä et al., 2008).

GPPsim = (εmax ⋅ f T ⋅ f VPD ⋅ f L ⋅ fCI ⋅ fW) ⋅PPFD ⋅ f APAR (1)

f T =
2 ⋅ exp(− T f − Topt

kT
)

1 + (exp(− T f − Topt
kT

))
2 (2)

T f (t) = (1 − αfT) ⋅ T(t) + αfT ⋅T f (t − 1) (3)

fVPD = exp(κ ⋅ (
Ca0
CO2

)

Cκ

⋅VPD) ⋅ (1 +
CO2 − Ca0

CO2 − Ca0 + Cm
) (4)

Table 1
Description, Range, Initial Values, and Units of Calibrated Model Parameters

fX/model name Symbol Definition
Initial
value

Lower
bound

Upper
bound Units Reference

PWhr , Phr models At Length of acclimation time 18 1 100 Days after Mengoli et al. (2022)

Baohr, Baodd
models

εmax Maximum light use efficiency 0.04 0 0.13 μmolCO2 ⋅ μmol photons− 1 Skillman (2008)

f T (Baohr, Baodd
models)

Topt Optimal temperature 10 5 35 °C Bao, Wutzler, et al. (2022)

kT Sensitivity to temperature changes 2 1 20 °C− 1 Bao, Wutzler, et al. (2022)

α fT Lag parameter for temperature effect 0.29 0 0.9 – Bao, Wutzler, et al. (2022)

f VPD (Baohr,
Baodd models)

κ Sensitivity to VPD changes − 5 × 10− 5 − 0.01 − 1 × 10− 5 Pa− 1 Bao, Wutzler, et al. (2022)

Cκ Sensitivity to atmospheric CO2
concentration changes

0.4 0 10 – Bao, Wutzler, et al. (2022)

Ca0 Minimum optimal atmospheric CO2
concentration

380 340 390 ppm Bao, Wutzler, et al. (2022)

Cm CO2 fertilization intensity indicator 2000 100 4,000 ppm Bao, Wutzler, et al. (2022)

f L (Baohr, Baodd
models)

γ Light saturation curvature indicator 2 × 10− 3 0 0.05 μmol photons− 1 ⋅ m2 ⋅ s Bao, Wutzler, et al. (2022)

f CI (Baohr, Baodd
models)

μ Sensitivity to cloudiness index changes 0.5 10− 3 1 – Bao, Wutzler, et al. (2022)

fW (PWhr , Phr,
Baohr, Baodd
models)

WI Optimal soil moisture 0.26 0.01 0.99 mm ⋅mm− 1 Bao, Wutzler, et al. (2022)

kW Sensitivity to soil moisture changes − 11 − 5 − 30 – Bao, Wutzler, et al. (2022)

α Lag parameter for soil moisture effect 0.98 0 1 – Bao, Wutzler, et al. (2022)

WAI (PWhr , Phr,
Baohr, Baodd
models)

AWC Available water capacity 100 1 1,000 mm Bao, Wutzler, et al. (2022)

θ Rate of evapotranspiration 0.05 10− 4 0.1 mm ⋅ h− 1 Bao, Wutzler, et al. (2022)

PETscalar Multiplicative scalar for
potential evapotranspiration

1.2 0 5 – Trautmann et al. (2018)

MRtair Snow melt rate for temperature 0.125 0 0.5 mm ⋅ °C− 1 ⋅ h− 1 Trautmann et al. (2018)

MRnetrad Snow melt rate for net radiation 0.0375 0 0.125 mm ⋅MJ− 1 ⋅ h− 1 Trautmann et al. (2018)

sna Sublimation resistance 0.44 0 3 – Bao, Wutzler, et al. (2022)
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f L =
1

γ(PPFD ⋅ fAPAR) + 1
(5)

fCI = CIμ (6)

fW =
1

1 + exp (kW (Wft − WI))
(7)

Wft = (1 − α) ⋅Wt + α ⋅Wft− 1 (8)

In this study, we used the LUE model of Bao, Wutzler, et al. (2022), Bao et al. (2023) since it emerged as a robust
representation from the systematic comparison across the large diversity of LUE formulations in the literature.
The model selection followed a Bayesian approach that leveraged on the evaluation of modeling performance
across FLUXNET EC sites (Pastorello et al., 2020) when forced and calibrated with daily data for each site. We
denoted this model as the Baohr model when we parameterized at hourly scale, and as the Baodd model when we
parameterized at daily scale. The model is described in Equations 1–8, where f T, f VPD, fW, f L, and fCI are
partial sensitivity functions for T, VPD,W, L, andCI, respectively. In this case,W and fW were calculated similar
to the implementation in PWhr model, that is, with a simple hydrological model (Text S1 and Figure S1 of Sup-
porting Information S1) and drought stress function (Equations 7 and 8 are same as Equations S1 and S2 of
Supporting Information S1), respectively. Bold terms in the Equations 1–8 are model parameters, and their initial
values, units, and ranges are described in Table 1. The physical ranges for most of the parameters were based on
Bao, Wutzler, et al. (2022), Bao et al. (2023), and Trautmann et al. (2018). The f VPD term, viz. Equation 4, also
accounts for atmospheric CO2 concentration. The partial sensitivity functions range from zero to one (except the
2nd part of Equation 4 which can be greater than one), where a value of zero completely diminishes, and of one
completely favors GPP. In this study, we changed the denominator of Equation 2 in comparison to the original

exponential function exp(− T f − Topt
kT

)
2
of Bao, Wutzler, et al. (2022), Bao et al. (2023), as the revised version

produced a more realistic range of f T (Figure S3 of Supporting Information S1). Sensitivity functions f T and fW
also consider a lag effect of T and W. The lag effect of temperature was considered for Temperate, Boreal, and
Polar regions where the first letter of the Köppen–Geiger (KG) climate class is “C,” “D,” “E,” and that of soil
water supply was considered for arid regions where the first letter of the KG climate class is “B” (Beck
et al., 2018; Rubel et al., 2017).

2.2. Data Used

We selected 198 eddy covariance sites, for which the required forcing and observation or derived data for model
parameterization were available from the FLUXNET2015 data set (Pastorello et al., 2020; FLUXNET.
org, 2024a). A list of these sites is provided in Table S8 of Supporting Information S1 and their spatial distri-
butions are plotted in Figure S4 of Supporting Information S1. The variables which were used to force, and
parameterize models as well as data processing steps such as gap–filling, and quality control are described in
detail in Table A1, Appendix B and Appendix C. We prepared these data in both hourly and daily resolutions.

In our study, a total of 13 different PFTs (as defined in FLUXNET.org, 2024b) were represented: croplands
(CRO; 19 sites), deciduous broadleaf forests (DBF; 25 sites), deciduous needle leaf forest (DNF; one site),
evergreen broadleaf forests (EBF; 13 sites), evergreen needle leaf forests (ENF; 47 sites), grasslands (GRA; 35
sites), mixed forests (MF; nine sites), closed shrublands (CSH; three sites), open shrublands (OSH; 13 sites),
savannas (SAV; six sites), permanent wetlands (WET; 20 sites), woody savannas (WSA; six sites), and land cover
under snow for most of the year (SNO; one site). The major KG climate classes (Rubel et al., 2017; Beck
et al., 2018; FLUXNET.org, 2024c) are represented by 12 tropical sites, 18 arid sites, 87 temperate sites, 71 boreal
sites, and 10 polar sites. We also classified sites into nine climate–vegetation types, similar to Bao, Wutzler,
et al. (2022), in which seven sites are tropical forests (TropicalF), five sites are tropical grassland (TropicalG), six
sites are arid forest (AridF), 12 sites are arid grassland (AridG), 51 sites are temperate forest (TemperateF), 36
sites are temperate grassland (TemperateG), 52 sites are boreal forest (BorealF), 19 sites are boreal grassland
(BorealG), and 10 sites have polar vegetation.
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2.3. Model Parameterization

We primarily defined four different parameterization strategies consisting of various subsets of data to calibrate
the model parameters controlling hourly GPP dynamics. These parameterization strategies were used to deter-
mine a vector of calibrated parameter values (a) for each site–year, (b) for each site, (c) for each PFT, and (d) for
all sites at once (global parameterization). We also performed another parameterization per site using a modified
cost function which used an additional constraint on the IAV of GPP (CostIAV ). We chose various parameteri-
zation strategies ranging from more flexible to rigid to evaluate how good or bad the model performs with
changing parameterization. We parameterized and forced the Baohr model, and the Baodd model using hourly and
daily data, respectively to perform a comparative analysis (Table 2). The PWhr model and the Phr model were only
parameterized and forced using hourly data (Table 2).

We used Python (Python Core Team, 2021) implementation (pycma v3.3.0.1) of the Covariance Matrix Adap-
tation Evolution Strategy (CMA‐ES) (Hansen & Kern, 2004; Hansen et al., 2019) as our global search algorithm
to find the values of model parameters for which cost function reached its minimum. This is a derivative‐free,
evolutionary algorithm, which is designed to find global minima in a rugged parameter space.

CostiP = (1 − GPPNNSEi) + (1 − ETNNSEi) (9)

CostiBao = (1 − GPPNNSEi) + (1 − ETNNSEi) + Costideal + Costnon_ideal (10)

A robust cost function is a necessity for the numerical optimizer to find the global minimum. The cost functions
for PWhr , Phr models (CostiP) and the Baohr, Baodd models (CostiBao) were calculated as Equations 9 and 10,
respectively, in case of per site–year and per–site parameterization. Here, i is either a site or site–year based on
parameterization type. For PFT‐specific model parameterization, the cost functions were ∑

NPFT
i=1 CostiP and

∑
NPFT
i=1 CostiBao for P

W
hr , Phr models and Baohr, Baodd models, respectively. i denotes a site andNPFT denotes the total

number of sites in a specific PFT. In the case of global model parameterization, the cost functions were
∑

N
i=1CostiP and ∑

N
i=1CostiBao for the P

W
hr model and Baohr, Baodd models, respectively. i denotes a site and N

denotes the total number of sites used in this study.

NNSEi =
1

2 − NSEi
(11)

Table 2
Description of Models and Tasks Accomplished With Each Specific Model

Models Description

Parameterization strategies

Per site–year Per site using CostIAV Per site Per PFT Global

Phr P‐model of Mengoli et al. (2022) parameterized using hourly data a, d a, d a, d a, d a, d

PWhr P‐model of Mengoli et al. (2022) with an additional constraint on
drought stress and parameterized using hourly data

a, b, d, e a, b, d, e a, b, d, e a, b, d, e a, b, d, e

Baohr LUE model of Bao, Wutzler, et al. (2022) parameterized using hourly data a, c, d, e a, c, d, e a, c, d, e a, c, d, e a, c, d, e

Baodd LUE model of Bao, Wutzler, et al. (2022) parameterized using daily data a, c, d a, c, d a, c, d a, c, d a, c, d

Note. The tasks are described in the footnote of the table. aEvaluation of model performance across timescale with different model types, parameterization strategies, and
cost functions. bEvaluation of an optimality‐based model with an explicit drought stress function. cEvaluation of a semi‐empirical model with different temporal
resolutions of data used for model parameterization. dFactors behind variability of model performance across timescales. eVariability of annual model performance with
model performance in simulating diurnal gross primary productivity (GPP) peaks.
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NSEi = 1 −
∑

Nt,i
t=1(σweightt,i ⋅ (ECt,i − simt,i))

2

∑
Nt,i
t=1(σweightt,i ⋅ (ECt,i − ECt,i))

2 (12)

σweightt,i = 1 −
σt,i − min(σi)

max(σi) − min(σi)
(13)

GPPNNSEi
and ETNNSEi

were calculated (Equation 11) as a weighted normalized NSE, viz. NNSE (Hundecha &
Merz, 2012) between the time series of good quality data points (see Appendix B for the selection criteria) of EC
derived and simulated GPP and ET, respectively. The GPP and ET derived from ECmeasurements are denoted as
GPPEC and ETLE, respectively. The simulated GPP and ET are denoted as GPPsim and ETsim (see Figure S1 of
Supporting Information S1 for calculation of ETsim), respectively. We considered ET as well in our cost function
to better constrain the parameters of the simple hydrological model used in this study. The NNSE values (Nash &
Sutcliffe, 1970) are between zero and one, where one is the best, and zero is the worst agreement between
observed and simulated data. Here, we used these normalized values so that minimizing (1 − NNSE) always
results in better model performance in comparison to using (1 − NSE), where NSE can have values between − ∞
(worst agreement) and one (best agreement). In Equation 12, Nt,i is the total number of good quality data points
from each timestep t for a site–year or site i. σt,i in Equation 13 is random uncertainty (standard deviation of fluxes
in a sliding window of ±5 days and ±1 hr of the time‐of‐day of the current timestamp) of NEE or ET from each
timestep t for a site–year or site i (Table A1). Similarly, σi in Equation 13 is random uncertainty of full NEE and
ET time series for a site–year or site i. The normalized random uncertainty in Equation 13 was used in the cost
function to allocate higher and lower weight to EC–derived values with lower and higher uncertainties,
respectively.

Costideal = ((1 − max( f Tr)) + (1 − max( fVPDr)) + (1 − max( fWr)) + (1 − max(f Lr))) ⋅ 103 (14)

Costnon_ideal = ∑
r
( ( f Tr − θ fT) (T < 0°C & f Tr > θ fT))

(15)

+∑
r
( ( f VPDr − θ fVPD) (VPD> 2000Pa & fVPDr > θfVPD))

+∑
r
( ( fWr − θ fW) (W < 0.01 & fWr > θ fW)

The Costideal and Costnon_ideal were introduced as regularizers in CostiBao to avoid over‐fitting of the sensitivity
functions (Bao et al., 2023; Bao, Wutzler, et al., 2022). These cost function components ensure that values of
partial sensitivity functions were not penalized and favored under ideal and non‐ideal conditions, respectively.
The ideal and non‐ideal conditions were determined by certain constant thresholds for all sites. Equation 14
ensured that the partial sensitivity functions, f T (Equation 2), only left part of the f VPD (Equation 4), fW
(Equation 7) and f L (Equation 5) approaches one, when certain ideal environmental conditions (PPFD ∈ [0 to 600
μmol photons ⋅m− 2 ⋅ s− 1], f APAR ∈ [0 to 1], T ∈ [− 5 to 40 °C], VPD ∈ [0–4,500 Pa],W ∈ [0 to 1]) occur (these
ranges are denoted by subscript r), so that the εmax in Equation 1 reaches its maximum potential. The factor 103 in
Equation 14 was included to match the ranges of all other components in the cost function for the Baohr, Baodd
models (CostiBao) so that all the components had equal weight. Equation 15 penalized the cases when the values of
f T (Equation 2), only left part of f VPD (Equation 4), and fW (Equation 7), were greater than a certain threshold
(θ fT = 0.2, θfVPD = 0.9, θ fW = 0.2) under non‐ideal conditions (T < 0 °C, VPD > 2,000 Pa, W < 0.01) for
photosynthesis.

CostIAViP = (1 − GPPNNSEi) + (1 − GPPy
NNSEi

) + (1 − ETNNSEi) (16)

CostIAViBao = (1 − GPPNNSEi) + (1 − GPPy
NNSEi

) + (1 − ETNNSEi) + Costideal + Costnon_ideal (17)
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GPPy
NNSEi

=
1

2 − GPPy
NSEi

(18)

GPPy
NSEi

= 1 −
∑

Nt,i
t=1(σ

y
weightt,i ⋅ (EC

y
t,i − simy

t,i))
2

∑
Nt,i
t=1(σ

y
weightt,i ⋅ (EC

y
t,i − ECy

t,i))
2 (19)

σ y
weightt,i = 1 −

σ y
t,i − min(σ y

i )

max(σ y
i ) − min(σ y

i )
(20)

ECy
t,i =∑

t

t=1
ECt,y,i; simy

t,i =∑
t

t=1
simt,y,i; σ y

t,i =∑
t

t=1
σt,y,i (21)

In the case of per–site–year parameterization using cost functions in Equations 9 and 10, we fitted the model so
that the annual average of GPP can be captured well for each site–year. Whereas, in the case of per–site
parameterization using cost functions in Equations 9 and 10, the model was parameterized for each site. We
performed another experiment as a balance between these two experiments using the CostIAV , which is similar to
Desai (2010) to put an additional constraint on IAV, and parameterized PWhr , Phr, Baohr, and Baodd models for each
of the EC sites. The cost functions, CostIAViP for PWhr , Phr models (Equation 16) and CostIAViBao for Baohr, and Baodd
models (Equation 17) now include an additional term (1 − GPPNNSEi

y) to constrain the annual cumulative sum
of GPP flux from each site i. ECy

t,i, sim
y
t,i, and σ y

t,i (Equation 21) are cumulative sums ofGPPEC,GPPsim, and σNEE

from start of each year y to timestep t for each site i, respectively.

2.4. Simulating and Evaluating GPP Estimates

2.4.1. Forward Runs

In the case of the site–year parameterization, we performed a forward run for each site–year using the respective
set of calibrated parameter values and forcing data for that year. Afterward, we concatenated GPPsim from all the
years for a given site to assess model performance. For per–site parameterization using CostIAV , and per–site
parameterization, we used site‐specific values of calibrated parameters to perform site‐level model evaluation.
We also applied calibrated model parameters for a certain PFT to simulate GPP at all the sites which belong to a
certain PFT. Similarly, for the global parameterization, a single set of calibrated parameter values was used to
simulate GPP for each site.

2.4.2. Model Performances Metric

We performed forward runs at an hourly scale and averaged the hourly simulations to daily, weekly, monthly, and
annual temporal frequencies to calculate model performance measures at different temporal aggregations. Model
performance was only evaluated for temporal aggregations from daily to annual for the Baodd model. We applied
a data screening procedure (Appendix C) before calculating model performance measures.

NSE(y, ŷ) = 1 −
∑

N
t=1( yt − ŷt)

2

∑
N
t=1( yt − ȳ)2

(22)

We evaluated how well a model can simulate the IAV of GPP based on how well a model simulated the annual
average GPP for a site. In this study, we performed most of our analysis using NSE (Nash & Sutcliffe, 1970) and
normalized NSE, viz. NNSE (which is 1

2 − NSE) as NSE indicates the degree to which scatter between observed and
simulated data fits to the 1:1 line. We used Equation 22 to calculate NSE between a reference (y) and a predicted
( ŷ) variable, where N is the total number of time‐steps, and yt, ŷt are the values of reference and predicted
variables, at timestep t. In addition, we calculated the square of the Pearson correlation coefficient (R2)
(Kirch, 2008) which explains whether the dispersion of observed and simulated data matches and in the case of an
unbiased model, values of NSE will be closer to values of R2. Whereas, if a model is systematically biased, it will
result in higher R2 values, but bad NSE values (Krause et al., 2005). We also calculated Root Mean Squared Error
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(Chai & Draxler, 2014) to quantify how closely the mean of simulated data matches with the mean of the observed
data.

NSE = 2 ⋅αNSE ⋅ r − α2NSE − β2n (23)

αNSE =
σsim

σEC
(24)

βn =
μsim − μEC

σEC
(25)

Moreover, using Equations 23–25, we decomposed NSE values to linear correlation (r), relative variability
(αNSE), and bias (βn) in some cases to investigate which of these were improved or diminished between different
model parameterization strategies (Gupta et al., 2009). In Equations 24 and 25, σsim and σEC are standard de-
viations of GPPsim and GPPEC, respectively, μsim and μEC are mean GPPsim and GPPEC, respectively. We
calculated these metrics using the Python (Python Core Team, 2021) package Permetrics v1.5.0 (Van
Thieu, 2023; Van Thieu & Mirjalili, 2023), and the definition of each of the model performance metrics can be
found in the package documentation.

2.4.3. Estimating Uncertainties in Annual GPP

GPP is not directly measured using the EC technique (Foken et al., 2011; Montgomery, 1948; Swinbank, 1951).
Rather, GPP is derived from NEE using a flux partitioning method (Lasslop et al., 2010; Reichstein et al., 2005).
The measurement of NEE is affected by low turbulence conditions when the EC system misses the carbon flux
due to advection transport (Aubinet et al., 2010). The low turbulence conditions were identified by friction ve-
locity threshold (u∗), and NEE measurements during these conditions were discarded and gap‐filled (Papale
et al., 2006). 200 values of u∗ thresholds were estimated using a bootstrap approach for each site–year, and finally
40 different values (chosen from percentile 1.25 to percentile 98.75 with a step of 2.5) of u∗ was used to produce
40 different realizations of NEE data. These u∗ thresholds were either estimated per year using variable u∗
threshold (VUT) method where the u∗ threshold of a year depends on data from a given year and its neighboring
years or estimated using data from all years, and remains constant across years, which is known as constant u∗
threshold (CUT) method (Pastorello et al., 2020). Thereafter, seven different representative NEE data were
produced as percentiles (XX) 5, 16, 25, 50, 75, 84, and 95 of the 40 different NEE values for each VUT and CUT
method. These seven NEE data were further partitioned to estimate GPP using daytime (DT) and night‐time (NT)
partitioning methods (Lasslop et al., 2010; Reichstein et al., 2005).

Here, we used GPP_NT_VUT_USTAR50 from the FLUXNET2015 data set (Pastorello et al., 2020) as our
reference GPP or GPPEC for model calibration and evaluation (see Section 2.2 and Appendix A). These GPP
values were derived using night‐time partitioning from NEE data (NEE_VUT_USTAR50) where the VUT
method was considered, and the 50 percentile value of u∗ thresholds was applied. However, the GPP data
disseminated in the FLUXNET2015 data set has a systematic uncertainty on the choice of NEE data (depending
on percentile XX), and partitioning methods. This uncertainty can be large when the fluxes are aggregated to
annual scale. We annually aggregated four other GPP variables (GPP_NT_VUT_05, GPP_NT_VUT_95,
GPP_DT_VUT_05, GPP_DT_VUT_95) derived using either daytime or night‐time partitioning method, and
derived from 5 (NEE_VUT_05) and 95 (NEE_VUT_95) percentile NEE values, and screened for good site–years
with their respective quality control flags (see Appendix C).We quantified the uncertainty range of annualGPPEC
for a site–year as the minimum of annual GPP_NT_VUT_05 and GPP_DT_VUT_05 to the maximum of annual
GPP_DT_VUT_95 and GPP_NT_VUT_95. Thereafter, we also quantified the fraction of site years in a site for
which annual GPPsim estimated from different experiments were within the uncertainty range of GPPEC. The
values ofGPPEC were also affected by random uncertainties in NEE flux. We used hourly random uncertainties in
NEE flux to weigh the contribution of a GPP value from a given hour in the cost function (Section 2.3). However,
the random uncertainty at annual scale was not considered as they greatly reduce with aggregation (Hollinger &
Richardson, 2005; Tramontana et al., 2016).
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2.4.4. Factors Influencing Model Performance

We selected potential factors that can affect model performance at different temporal resolutions. These factors
can be of two types. There were factors which we determined based on our experiment design, which included
model types (PWhr model, Phr model, Baohr model, and Baodd model), parameterization strategies (per site–year,
per site using CostIAV , per site, per PFT, and global parameterization), number of years with good quality data
(Appendix C) in a site. Whereas, other factors represent site‐specific characteristics, including PFT, KG climate
class, and climate–vegetation types.

First, we conducted Levene's test (Levene, 1960) to determine if the assumption of homoscedasticity was fulfilled
across groups in the controlling factors. Then, we performed an N‐way Analysis of Variance (ANOVA)
(Kaufmann & Schering, 2014) with the potential controlling factors to determine which of them played a major
role in determining model performance at hourly and annual temporal scales. For analysis at an hourly scale, the
Baodd model was not included as this model produced simulations at a daily scale. We performed two N‐way
ANOVA analyses once including the performance of the Phr model, and then excluding the performance of
the Phr model. The Levene's test and N‐way ANOVA analyses were implemented using SciPy v1.11.3 (Virtanen
et al., 2020) and statsmodels v0.14.0 (Seabold & Perktold, 2010), respectively.

2.4.5. Evaluating GPP Estimates in Water–Limited Ecosystems

We investigated to determine whether explicit accounting of the drought stress function in the PWhr model had
improved its performance at arid sites. For this purpose, we chose the aridity index (AI) to determine which sites
were arid or semi‐arid, as this index provided a numerical representation of moisture availability (Zomer
et al., 2022) at a location. The AI values were calculated by dividing the average precipitation (P) per hour by the
average potential evapotranspiration (PET) per hour for the whole observation period at a site.

We drew examples from a few site‐specific results to highlight different aspects of the behaviour of PWhr and Phr
models for ecosystems with contrasting soil moisture controls on GPP and with a larger availability of good–
quality measurements. For this purpose, we chose a water–limited semi‐arid site (annual average precipitation
of 318 mm) in central Australia (Alice Springs, AU‐ASM). This site also features a complex mixture of Mulga
woodland and savanna (Cleverly et al., 2013; Pastorello et al., 2020). In contrast, we also highlighted the be-
haviours of PWhr and Phr models in an irrigated cropland (Mead ‐ irrigated continuous maize site, US‐Ne1) in the
mid‐western U.S.A (Amos et al., 2005; Pastorello et al., 2020).

2.4.6. Effect of Temporal Resolution of Data on Model Performance

We parameterized the LUE model of Bao, Wutzler, et al. (2022) with hourly and daily data for Baohr model and
Baodd model, respectively. We performed a comparison between these two versions of the model to highlight
whether the resolution of data used for model parameterization can substantially affect the prediction of the
annual average or IAV of GPP fluxes. Here, we also drew a site‐specific example from an energy–limited de-
ciduous forest in central Germany (Hainich, DE‐Hai) as this site had a very long observation period (Knohl et
al., 2003).

2.4.7. Evaluating Modeling Experiments of Various Complexities

We formulated our experiments using models and parameterization strategies consisting of varying numbers of
model parameters to be calibrated. The number of parameters calibrated for a detailed parameterization strategy,
such as per site–year parameterization was substantially higher than a generic parameterization strategy, such as
global parameterization. We used Akaike's Information Criterion (AIC) to investigate whether a complex
modeling experiment with a higher number of parameters can better simulate GPP (Burnham&Anderson, 2004).

AIC = n log(
∑ (ECi − simi)

2

n
) + 2K (26)

AICc = n log(
∑ (ECi − simi)

2

n
) + 2K +

2K(K + 1)
n − K − 1

(27)
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Following recommendations of Burnham and Anderson (2004), we used Equation 26 to calculate AIC when
n/K > 40, where n is the total number of observations andK is the total number of parameters. Otherwise, we used
a corrected version of AIC (AICc, Equation 27). Though the values of AIC or AICc can be in any range, the lowest
value of AIC or AICc determines the preferred modeling experiments. ECi and simi are ith observations of EC‐
derived GPP and simulated GPP, respectively in Equations 26 and 27. We considered GPPsim from all the four
variations of models, that is, PWhr model, Phr model, Baohr model, and Baodd model for calculation of AIC or AICc.
We calculated AIC at hourly and daily aggregations by concatenating good quality (Appendix C) hourly or daily
data, and daily averages GPPEC and GPPsim from all the days from all sites. Similarly, we used monthly and
annual aggregations for calculating AICc at monthly and annual scales, respectively. AICc was calculated at
monthly and annual aggregation, as n was usually smaller than K in these cases. The value of K was the total
number of model parameters calibrated for all the site–years, for all the sites, for all the PFT, and for a specific
model in case of per site–year parameterization, per site parameterization using CostIAV , per site parameteriza-
tion, per PFT parameterization, and global parameterization, respectively.

2.4.8. Difference in Model Performances Between PFTs

We studied the distribution of model performances of the PWhr model and the Baohr model for different param-
eterization strategies across PFTs and climate–vegetation types (Section 2.2). We performed non‐parametric
statistical significance testing using a two‐sample Kolmogorov‐Smirnov (K‐S) test (Hodges, 1958) between a
given pair of parameterization strategies for a given model and PFT to test if model performance obtained from a
parameterization strategy is significantly different from another for a PFT and a model. Similarly, we performed
the K‐S test between model performances of the PWhr model and the Baohr model for a given parameterization
strategy and a PFT to test if model performances were significantly different between two models. We performed
the K‐S test using SciPy v1.14.1 (Virtanen et al., 2020).

2.4.9. Simulating GPP Peaks

We assessed model performance in predicting peakGPPEC. We defined peakGPPEC and peakGPPsim as the 90th
percentiles of hourly GPPEC (P90GPPEC

) and GPPsim (P90GPPsim
), respectively, following the concept of good

hours by Zscheischler et al. (2016) and Fatichi and Ivanov (2014). We calculated P90GPPEC
and P90GPPsim

for each
site–year considering only good quality hourly data (Appendix B). We compared the ratios of peak GPPsim from
PWhr model and Baohr model to GPPEC for each parameterization strategy in order to identify possible biases.

ΔNNSEP90 = NNSE j1
P90 − NNSE j2

P90 (28)

ΔNNSEy = NNSE j1
y − NNSE j2

y (29)

We furthermore investigated whether improving the simulation of peaks of GPPEC improved the simulation of
IAV of GPP. We calculated NNSE between P90GPPEC

and P90GPPsim
(NNSE j

P90) from all the site–years in a site
considering only good site–years and only for sites with more than 3 years of good quality data (Appendix C) for a
parameterization strategy j. Similarly, we calculated NNSE between the annual average of GPPEC and GPPsim

(NNSE j
y) for sites with more than 3 years of good quality data (Appendix C) for a parameterization strategy j.

Then, differences between NNSE j1
P90 and NNSE j2

y were calculated for a pair of parameterization strategies where
j1 and j2 are two different parameterization experiments, for both PWhr model and Baohr model (Equations 28 and
29). Correlation between ΔNNSEP90 and ΔNNSEy were then investigated to study whether a certain parame-
terization strategy for a given model better captured the GPPEC peaks, and thus contributed to higher annual
model performance.

3. Results
3.1. Overall Model Performance

All four models, that is, PWhr , Phr, Baohr, and Baodd models performed significantly better at the hourly scale than
the annual scale (Figure 2). The use of an additional constraint on IAV, that is, CostIAV did not contribute to better
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model performance across sites at an annual scale and performed closer to parameterization per site and poorer
than site–year parameterization (Figure 2). The median model performance was highest for the model parame-
terization per site–year among all model parameterization strategies (per site–year, per site using CostIAV , per site,
per PFT, and global parameterization) for all four models (Table D1). Model parameterization per site–year also
produced the best model performance at all temporal aggregation levels including annual aggregation (Figures 2,
S5, and Table S2 of Supporting Information S1). PWhr model performed substantially better for the majority of the
sites compared to Phr model at all temporal aggregation levels as it explicitly considered site‐specific water
availability (Figures 2, S5, and Table S2 of Supporting Information S1). Comparison of model performances at
different temporal aggregations also revealed that Baohr and Baodd models performed slightly better than the PWhr
model across all timescales (hourly, daily, weekly, monthly, and annual), as the Baohr and Baodd models were
more flexible than the PWhr model and captured ecosystem response with a broad range of parameters (Figure 2,
Table D1, Figure S5 and Table S2 of Supporting Information S1). For example, the median NNSE(s) at the hourly
resolution were 0.827 and 0.855 for the PWhr model and the Baohr model, respectively. Conversely, at the annual
resolution, the median NNSE(s) were 0.543 and 0.628 for the PWhr model and Baohr model, respectively.

The annual average of GPPsim was within the uncertainty range of GPPEC (as defined in Section 2.4.3) for most
site–years in most of the sites when PWhr (mean fraction of site–years per site: 0.87), Baohr (mean fraction of site–
years per site: 0.93), and Baodd (mean fraction of site–years per site: 0.94) models were parameterized per site–
year (Figure 3 and Table E1). Phr model overestimated annual GPPsim beyond the uncertainty range of GPPEC in
most cases for all parameterization methods, where the mean fraction of site–years per site within the uncertainty
range of GPPEC was ≤0.13 (Figure 3 and Table E1). Mean fractions of the site–years per site for which GPPsim
was within the uncertainty range were also similar for site‐specific parameterization compared to site–year
specific parameterization for PWhr , Baohr, and Baodd models (Table E1). However, for PFT‐specific

Figure 2. Distributions of model performance measure (normalized Nash‐Sutcliffe efficiency, viz. NNSE) at hourly/daily
scale (first row) and at annual timescale (second row) from P‐model of Mengoli et al. (2022) with drought stress,
parameterized at hourly scale (PWhr ), P‐model of Mengoli et al. (2022) without drought stress, parameterized at hourly scale
(Phr), the global best model of Bao, Wutzler et al. (2022) parameterized at hourly scale (Baohr), and global best model of Bao,
Wutzler, et al. (2022) parameterized at daily scale (Baodd). For the Baodd model, subplot (d) shows model performance at daily
scale as this model was parameterized at daily scale. CostIAV denotes the usage of an additional constraint on annual gross
primary production flux during per–site parameterization. The dotted vertical lines represent the median model performances,
which are summarized in Table D1. The numbers in parentheses beside the model name on top of each of the sub‐figures
represent the total number of sites. The model performance at an annual scale was calculated for fewer sites as some sites have a
very low measurement period (Appendix C).
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parameterization and global model parameterization, the annual average of GPPsim was unreliable and went
beyond the uncertainty range of GPPEC for most cases (Figure 3).

3.2. Factors Influencing Variability in Model Performance

We summarized the percentage contributions of factors which influenced model performance at hourly and
annual scales and found that most of the variability in model performance came from how we designed our
modeling experiments (Figure 4). Model types was a crucial factor when the Phr model was included in N‐way
ANOVA analysis, as this model had comparatively poor performance at both hourly and annual scales and
resulted in greater variability in the NNSE values (70.1% and 63.5% contribution to the sum of squares of the
regression, viz. SSR in hourly and annual scale, respectively). We then excluded the Phr model from further
analysis to uncover the other factors behind the model performance and found that for the hourly scale, the model
performance varied the most across the groups of KG classes (33.9% contribution to the SSR), followed by
parameterization type (31.0% to the SSR) and climate–vegetation type (25.4% contribution to the SSR) (Figure 4).
However, at an annual scale, the parameterization strategy strongly affected (62.3% contribution to the SSR) the
model performance, as per–site–year parameterization usually better simulated the annual GPPobs compared to
other parameterization strategies. The number of good years (Appendix C) used for calculating annual NNSE also
exerted a small influence (4.9% contribution to the SSR) on the annual model performance. In general, there were
only slight performance differences between models when the Phr model was not considered, and model
parameterization played a bigger role in the variability of model performance.

Figure 3. Distributions of fractions of site–years of a site for which annual average of simulated gross primary production
(GPPsim) was within the uncertainty range of eddy‐covariance derived GPP (GPPEC). The GPPsim were estimated using
(a) P‐model of Mengoli et al. (2022) with drought stress, parameterized at hourly scale (PWhr model), (b) P‐model of Mengoli
et al. (2022) without drought stress, parameterized at hourly scale (Phr model), (c) global best model of Bao, Wutzler,
et al. (2022) parameterized at hourly scale (Baohr model), and (d) global best model of Bao, Wutzler, et al. (2022) parameterized
at daily scale (Baodd model). CostIAV in the legend denotes the usage of an additional constraint on annual gross primary
production flux during per–site parameterization. The dotted vertical lines represent the mean fractions of site–years of a site for
which the annual average of GPPsim was within the uncertainty range of GPPEC . The mean values are summarized in Table E1.
The numbers in parentheses beside the model name on top of each of the sub‐figures represent the total number of sites. The
model performance at an annual scale was calculated for fewer sites as some sites have a very low measurement period
(Appendix C).
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3.3. Effect of Drought Stress on Model Performance

The performance of the PWhr model to predict the annual average of GPPEC from each of the site–years sub-
stantially improved in comparison to Phr model (from an NSE of − 1.39 to 0.92) after explicit consideration of soil
water supply in the model (Figure 5). Most of this improvement came from the better prediction of the annual
average ofGPPEC at the arid and semi‐arid sites (with AI values lower than 0.5). For the semi‐arid site (AU‐ASM)
the predicting performance of the PWhr model for all the parameterization strategies largely benefited from the
explicit inclusion of soil water supply constraints (Figure 6). The systematic bias in model simulations was also
improved after the inclusion of a drought stress constraint, as well as the modeling bias also improved from a
generalized to a detailed parameterization strategy. Although the coupling of a simple hydrological model which
calculated water–availability based on precipitation and evapotranspiration and inclusion of drought stress
function generally improved the PWhr model for most of the site–years at an arid site, the model failed to capture the
GPPEC (Text S3, Figure S6 of Supporting Information S1) at an irrigated cropland site (US‐Ne1), as the simple
hydrological model which we used to calculate water–availability lacked representation of human management.

3.4. Effect of Temporal Resolution of the Data on Model Performance

The use of hourly data to constrain Baohr model parameters and aggregating hourly values of GPPsim to annual
scale did not have a significant effect on the Baohr model performance in comparison to parameterization of the
same model with daily data, that is, Baodd model, in simulating the annual average of GPPEC (Figure 7) for each
site–year. The value of NSE decreased from 0.961 to 0.891 for the Baohr model compared to the Baodd model, and
both models performed mostly similarly. Here, for the Baohr model, we also focus on a site‐specific example at a
site (DE‐Hai) in central Germany with a deciduous broadleaf forest where the Baohr model proved to be capable
of simulating annual average of GPPEC flux relatively well when the model was parameterized for each site–year
and each site (Figure 8). However, GPPEC was underestimated in cases of PFT‐specific and global parameter-
ization. For this specific site, the Baohr model performed relatively better in comparison to Baodd model
(Figures 8 and S7 of Supporting Information S1).

3.5. Role of Parameterization Strategies on Model Performance

Model performances at an annual scale generally increased with a more detailed parameterization strategy
(Figure 9). For the PWhr model, the median differences in annual model performance between the most detailed

Figure 4. Percentage contributions of factors influencing variability in model performance (normalized Nash‐Sutcliffe
efficiency, viz. NNSE) in the sum of squares in N‐way Analysis of Variance (ANOVA). The percentage contributions show
the influence of various factors on hourly and annual model performance when the P‐model (Mengoli et al., 2022) without
any explicit drought stress function, parameterized at hourly scale (Phr model) was considered in the analysis, as well as on
hourly and annual model performance excluding the Phr model. The sum of squares of residual was removed before plotting the
percentage contributions of the factors and only the explained variance is shown.
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parameterization strategy, that is, site–year parameterization, and other detailed parameterization strategies, that
is, per site parameterization using CostIAV and per site parameterization were small, which were 0.12, and 0.11,
respectively. In contrast, the median differences in annual model performance between the most detailed
parameterization strategy, that is, site–year parameterization, and other generalized parameterization strategies,
that is, PFT‐specific parameterization, and global parameterization were quite large, which were 0.28, and 0.37,
respectively. Similarly, for the Baohr model, the median differences in annual model performance between the
most detailed parameterization strategy, that is, site–year parameterization, and other detailed parameterization
strategies, that is, per site parameterization using CostIAV and per site parameterization were 0.16, and 0.15,
respectively. In contrast, the median differences in annual model performance between the most detailed
parameterization strategy, that is, site–year parameterization, and other generalized parameterization strategies,
that is, PFT‐specific parameterization, and global parameterization were 0.34, and 0.39, respectively. The positive
values of median annual model performance confirm the highest median performance of site–year parameteri-
zation compared to the other four parameterization strategies.

At an hourly scale, differences in model performance between a pair of similar parameterization strategies, such
as a pair of detailed parameterization (i.e., between site–year‐specific and site‐specific) or a pair of generalized
parameterization (i.e., between per PFT and global) approaches for both models were small (Figure S8 of
Supporting Information S1). However, this difference can be higher between a detailed and a generalized model
parameterization strategy. The median differences in hourly NNSE between site–year‐specific and site‐specific
model parameterization were 0.02 and 0.01 for the PWhr model and Baohr model, respectively. In contrast, the
median differences in hourly NNSE between site–year‐specific and global model parameterization were 0.11 for
both PWhr and Baohr models.

The median differences in annual model performance between per–site parameterization using CostIAV and per–
site parameterization were relatively small, which were 0.01 and 0.00 for PWhr model and Baohr model, respec-
tively, and it shows the additional constraint on IAV of GPP flux in the cost function did not substantially improve
annual model performance. At hourly scale, median differences in model performance between per–site

Figure 5. Scatter plot of the annual average (from good quality site–years, see Appendix C) of eddy covariance measurements
derived gross primary production (GPPEC) versus simulated gross primary production (GPPsim) from P‐model of Mengoli
et al. (2022) parameterized at hourly scale (a) without drought stress (Phr model) and (b) with drought stress (PWhr model). The
results in this plot are from parameterization for each site–year. We only used good–quality site–years in this figure
(Appendix C). The dots in the scatter represent a site–year and are colored by the aridity index (AI) of the site. The model
performance metrics (Nash‐Sutcliffe efficiency, viz. NSE) are shown at the top of each subplot. The equations of fitted
regression lines are shown in respective subplots.
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parameterization using CostIAV and per–site parameterization were also non‐existent, which were 0.00 for both
PWhr and Baohr models. Though the per–site parameterization using CostIAV did not improve the annual model
performance, it also did not degrade the hourly model performance.

3.6. Differences Between Modeling Experiments of Various Complexities

The lowest AIC values were obtained for per site–year parameterization for all the models at hourly and daily
scales or aggregations, suggesting the sum of squares errors (SSE) was substantially reduced even when a
comparatively complex parameterization strategy with a large number of model parameters was chosen (Table 3).
The AIC values gradually increased from per site–year, per site, per PFT to global parameterization at hourly and
daily scales or aggregations for all three models which are PWhr model, Baohr model, and Baodd model (Table 3).
Semi‐empirical models, that is, Baohr model and Baodd model also had mostly lower values of AIC compared to
optimality‐based PWhr model even though more parameters were parameterized for these models (Table 3). At the
daily scale, the Baodd model had the lowest AIC for all the parameterization experiments due to the parame-
terization at daily scale. Whereas, for the other two models, parameterization and forward runs were performed at
an hourly scale and then simulations were aggregated to daily resolution. The Phr model was not included in AIC
or AICc analysis as previous results proved this model significantly underperformed compared to the other
models, and this will always result in higher AIC or AICc values.

At monthly and annual scales, we show the differences in AICc values between PWhr , Baohr, and Baodd models for
the same parameterization strategy, and not between parameterization strategies in a same model. The reason
behind this is AICc values largely depend on the relationship between sample size, that is, n, and the total number
of parameters which were parameterized, that is, K. The values of AICc became very large even when a

Figure 6. Comparison of annual average of gross primary production (GPP) derived by eddy covariance measurements
(GPPEC), and GPP simulated (GPPsim) by the P‐model of Mengoli et al. (2022) parameterized at hourly scale without
drought stress (Phr model) and with drought stress (PWhr model). The five subplots show simulated GPP from (a) site–year
specific parameterization, (b) site‐specific parameterization using an additional constraint on inter–annual variability in the cost
function (CostIAV ), (c) site‐specific parameterization, (d) plant–functional types (PFT) specific parameterization, and (e) global
parameterization. The values of model performance measures (Nash‐Sutcliffe efficiency, viz. NSE, correlation coefficient, viz.
r, relative variability, viz. αNSE , and bias, viz. βn) are shown on top of respective subplots. This site is dominated by Mulga
(Acacia aneura), and had an annual average temperature of ≈22 °C, and an annual average precipitation of ≈318 mm during the
observation period (Cleverly et al., 2013; Pastorello et al., 2020). The vertical error bars represent the uncertainty range (see
Section 2.4.3) of the annual average of GPPEC for the corresponding years (the uncertainty range is relatively small for this
specific site). The site ID, PFT, and Köppen–Geiger climate class (KG) of the site are provided on top of the figure in bold.
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significantly smaller SSE was obtained, and they became unreliable when the value of n was closer to K. For
example, at monthly aggregation, per site–year parameterization of the PWhr model had a very high AICc value of
1.30 × 106 even when it had the lowest SSE among all the five parameterization strategies (Tables S3, S4, and S5
of Supporting Information S1). The Baodd model proved to be better able to capture the seasonal cycle, that is,
monthly GPP estimates compared to the other two models for most of the parameterization experiments
considering the number of parameters parameterized (Table 3). However, the PWhr model had the lowest AICc

value in the case of per site parameterization using CostIAV and per site parameterization at monthly aggregation.
In contrast, at an annual scale, the PWhr model had mostly the lowest AICc values, and some of the experiments also
suffered from the above‐described unreliable AICc estimates, where n and K had similar values (Tables 3, S3, S4,
and S5 of Supporting Information S1).

3.7. Model Performances Across Different Plant–Functional Types

Generally better model performances were achieved with both the PWhr model and the Baohr model when
parameterized detailed model parameterization strategies were used (Figure 10). In this analysis, we removed the
per–site parameterization experiment using CostIAV as it performed very similar to per–site parameterization, and
also we did not consider the Phr model as it produced poor performance across all the PFTs.

The highest median NNSEs were obtained with per–site–year parameterization for almost all the PFTs for both
models. The only exception is WSA for which the median model performance (median NNSE: 0.85) was
marginally higher for per–site parameterization experiment using CostIAV compared to per–site–year parame-
terization (median NNSE: 0.84) of Baohr model. For the PWhr model parameterization experiments, the highest
median value of NNSE was found for CSH for per–site–year parameterization (median NNSE: 0.88), DBF for
per–site parameterization (median NNSE: 0.85), CSH and DBF for per‐PFT parameterization (median NNSE:
0.81), and CSH for global parameterization (median NNSE: 0.80). However, CSH had only three sites and highest
median model performance for CSH should be interpreted with caution. For the Baohr model parameterization
experiments, the highest median value of NNSE was found for DBF for per–site–year parameterization (median
NNSE: 0.89), DBF and MF for per–site parameterization (median NNSE: 0.87), DBF for per‐PFT

Figure 7. Scatter plot of annual average (from good quality site–years, see Appendix C) eddy covariance derived gross
primary production (GPPEC) versus simulated gross primary production (GPPsim) by the light use efficiency model of Bao,
Wutzler, et al. (2022) parameterized at hourly (Baohr model) and daily scale (Baodd model) for each site–year. The plots show
the performance of the (a) Baohr model, and (b) Baodd model. The dots in the scatter represent a site–year. The model
performance metrics (Nash‐Sutcliffe efficiency, viz. NSE) are shown on the top of each subplot. The equations of fitted
regression lines are shown in respective subplots.
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parameterization (median NNSE: 0.82), and DBF and MF for global parameterization (median NNSE: 0.81). We
found similar results also for climate–vegetation types (Section 2.2), where a more detailed parameterization
strategy achieved higher model performance than a generalized parameterization strategy (Text S5 and Figure S9
of Supporting Information S1).

Specifically, we found the model performance significantly differed between per–site–year parameterization and
global model parameterization for most PFTs and both models (Figure 10). Model performance was also similar
between a pair of detailed parameterization strategies (per–site–year and per–site parameterization) and general
parameterization strategies (per‐PFT and global parameterization) for most PFTs. For PFTs with very few sites,
such as CSH, DNF, SNO, and WSA, statistical significance testing showed that the model performance was
similar among parameterization strategies. However, statistical significance tests can be unreliable for a few
samples. The model performance between PWhr model and the Baohr model for a specific parameterization strategy
was similar for most PFTs (Table S6 of Supporting Information S1). Similarly, model performance between both
models for a specific parameterization strategy was also identical for most PFTs (Table S7 of Supporting
Information S1).

3.8. Correlation Between AnnualModel Performance andModel Performance in Simulating Diurnal GPP
Peaks

One of the crucial reasons behind poor annual model performance (Figure 2 and Table D1) can be the inability of
both the PWhr model and the Baohr model to capture the peaks of GPPEC (Figure S10 of Supporting

Figure 8. Comparison of annual average of gross primary production (GPP) derived by eddy covariance measurements
(GPPEC), and GPP simulated (GPPsim) by the light use efficiency model of Bao, Wutzler, et al. (2022), which was
parameterized with hourly data (Baohr model). The five subplots show simulated GPP from (a) site–year specific
parameterization, (b) site‐specific parameterization using an additional constraint on inter–annual variability in the cost function
(CostIAV ), (c) site‐specific parameterization, (d) plant–functional types (PFT) specific parameterization, and (e) global
parameterization. The years 2010–2012 could not be parameterized in the case of site–year parameterization, as there were no
good quality evapotranspiration estimates from latent heat flux measurements for those years. The values of model performance
measures (Nash‐Sutcliffe efficiency, viz. NSE, correlation coefficient, viz. r, relative variability, viz. αNSE , and bias, viz. βn) are
shown on top of respective subplots. This site represents an average 140‐year‐old deciduous forest (Tamrakar et al., 2018) with a
distinct seasonal cycle and an annual average temperature of ≈8.3 °C, and an annual average precipitation of 750–800 mm
during the observation period (Knohl et al., 2003a; Pastorello et al., 2020). The vertical error bars represent the uncertainty range
(see Section 2.4.3) of the annual average of GPPEC for the corresponding years. The site ID, PFT, and Köppen‐Geiger climate
class (KG) of the site are provided on top of the figure in bold.

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004697

DE ET AL. 20 of 44

 19422466, 2025, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004697 by E
T

H
 Z

urich, W
iley O

nline L
ibrary on [06/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Information S1). Specifically, P90GPPEC
was highly underestimated in the case of global parameterization. The

median of the ratio of P90GPPsim
to P90GPPEC

were 0.77 and 0.84 for the PWhr model and the Baohr model,
respectively, during global parameterization. The underestimation generally decreased with more detailed
parameterization strategies, with little difference between the models. The median values of the ratio of P90GPPsim

to P90GPPEC
were 0.95 and 0.93 for the site–year parameterization of the PWhr model and the Baohr model,

respectively. Moreover, the lower values of the interquartile range (IQR) of these ratios signify the importance of
site–year parameterization compared to per PFT or global parameterization to reliably capture the peak GPPEC in
diurnal cycles for most of the sites and to attain better model performance at the sub‐daily scale. The values of
IQR were 0.1 for both the PWhr model and the Baohr model in the case of site–year parameterization, 0.44 and 0.37
for the PWhr model and the Baohr model, respectively in the case of PFT‐specific parameterization, and 0.44 and
0.49 for the PWhr model and the Baohr model, respectively in the case of global parameterization.

We further found that if a certain parameterization strategy better simulated the P90GPPEC
for each site–year, it

corresponded to a comparatively better annual model performance for a site which is demonstrated by the positive
values of Pearson correlation coefficients (Figure 11). Here also, a detailed parameterization strategy, such as
site–year parameterization resulted in a better simulation of P90GPPEC

, and thus better annual model performance
for most of the sites compared to a generalized parameterization strategy, such as global parameterization. In this
case when j1 was site–year parameterization and j2 was global parameterization, 91% and 89% sites had higher
NNSE j1

P90 than NNSE j2
P90 and corresponding NNSE j1

y than NNSE j2
y for the PWhr model and the Baohr model,

respectively. When j1 was parameterization per site using CostIAV and j2 was parameterization per site,
respectively, only 34% and 37% had positive values of ΔNNSEP90 (i.e., NNSE j1

P90 >NNSE j2
P90) and corresponding

Figure 9. Distributions of the differences between model performance measures (normalized Nash‐Sutcliffe efficiency, viz.
NNSE) calculated at annual scale, from various pairs of model parameterization experiments conducted for the P‐model of
Mengoli et al. (2022) with drought stress, parameterized with hourly data (PWhr model) and the light use efficiency model of
Bao, Wutzler, et al. (2022), parameterized with hourly data (Baohr model). CostIAV in parentheses denotes the usage of an
additional constraint on annual gross primary production flux during per–site parameterization. The boxes are spanned between
the first and third quartiles of the differences, and the line in the middle represents the median. The whiskers show the farthest
data point from the box within 1.5× of the interquartile range. The circles represent the outliers that go beyond the limits of the
whiskers. The vertical dotted gray lines separate each pair of model parameterization strategies.
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ΔNNSEy (i.e., NNSE j1
y >NNSE j2

y ) for the P
W
hr model and the Baohr model, respectively. This signified that using

an additional constraint related to the IAV of GPP in the cost function during model parameterization did not
improve the prediction of peak GPP values for most of the sites.

4. Discussion
4.1. Uncertainties in Modeling Experiments

Any model–data–integration study is prone to uncertainties related to both data and the model. The EC data set
used in our study has a couple of well‐known uncertainties. For example, the NEE measurements using the eddy
covariance technique can have uncertainties due to the accumulation of atmospheric CO2 under the canopy at
night (storage) and a sudden turbulent mixing during the morning when the stable night‐time boundary layer
breaks up, or because of advection of atmospheric CO2 out of the control volume sampled by the eddy covariance
system (Aubinet, 2008; D. Baldocchi et al., 2000; Jocher et al., 2018). The GPP fluxes that we used were derived
from NEE measurements by extrapolating the night‐time respiration of the ecosystem (Reichstein et al., 2005) to
daytime. Moreover, GPP can be estimated based on another well‐known algorithm, the daytime partitioning
method (Lasslop et al., 2010). We preferred night‐time partitioning as only respiration is modeled in this method.
In daytime partitioning, both GPP and respiration are modeled, resulting in higher prediction errors. The un-
certainties in our modeling results due to the choice of partitioning algorithm should be small as quantified in a
previous study by Desai, et al. (2008). Papale et al. (2006) proposed a standardized set of flux correction tech-
niques for the above‐described issues related to EC methods and removing random spikes in EC measurements.
Many of these correction techniques were adapted to the standardized ONEFlux pipeline for the production of the
FLUXNET2015 data set (Pastorello et al., 2020). Papale et al. (2006) also found that the uncertainties associated
with annual NEE, and fluxes derived from NEE, such as GPP and TER have an inherent uncertainty well below
100 gC ⋅m− 2 ⋅ year− 1. In our study, we found that annual GPPSim produced by experiments related to detailed
parameterization strategies were mostly within the range of uncertainty of GPPEC on the choice of different
variables produced by the data processing pipeline. However, quantifying full uncertainty in GPPEC related to
measurement errors, random noises, data gaps and gap‐filling methods, flux correction methods, and flux par-
titioning methods as well as propagating all the uncertainties to various temporal scales is a very challenging task
and beyond the scope of this study. Similarly, GPPSim can also have various uncertainties related to model
structure and simplified representation of ecosystem functions (such as stomatal conductance, photosynthesis,
leaf energy balance etc.), forcing data, and parameters (Schaefer et al., 2012; Zheng et al., 2018). For example, the
Bao model used in our study is based on the big leaf assumption. In contrast, differentiating between sunlit and
shaded leaves (two big‐leaf assumption) in a similar model can lead to higher performance under certain con-
ditions, such as under hot and dry conditions at daily and weekly scales (Bao, Ibrom, et al., 2022). However, the
two big‐leaf model was also equally poor at explaining IAV. In this study, we aimed to address some of these

Table 3
Akaike's Information Criterion (AIC) or Corrected AIC (AICc) Values for Modeling Experiments of Various Complexities

Temporal scale/ aggregation Models

Parameterization strategies

Per site–year Per site using CostIAV Per site Per PFT Global

Hourly scale (AIC) PWhr 1.72 × 107 1.84 × 107 1.86 × 107 2.16 × 107 2.25 × 107

Baohr 1.58 × 107 1.70 × 107 1.68 × 107 2.10 × 107 2.16 × 107

Daily scale/ aggregation (AIC) PWhr 4.58 × 105 5.05 × 105 5.11 × 105 6.88 × 105 7.42 × 105

Baohr 3.99 × 105 4.28 × 105 4.24 × 105 6.65 × 105 6.92 × 105

Baodd 2.68 × 105 3.12 × 105 3.18 × 105 4.98 × 105 5.58 × 105

Monthly aggregation (AICc) PWhr 1.30 × 106 1.63 × 104 1.63 × 104 2.04 × 104 2.25 × 104

Baohr − 4.55 × 104 1.79 × 104 1.79 × 104 1.97 × 104 2.02 × 104

Baodd − 3.40 × 104 1.67 × 104 1.70 × 104 1.52 × 104 1.73 × 104

Annual aggregation (AICc) PWhr − 3.56 × 103 − 5.22 × 103 − 5.57 × 103 9.09 × 102 9.28 × 102

Baohr − 3.19 × 103 − 3.84 × 103 − 3.72 × 103 1.42 × 103 9.26 × 102

Baodd − 3.66 × 103 − 3.45 × 103 − 3.39 × 103 1.12 × 103 7.49 × 102
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uncertainties in GPPSim by adopting majorly two different model structures and various parameterization
schemes.

We also used ET in the cost function which is equivalent to latent heat flux. The mismatch between the summation
of latent, sensible, and ground heat fluxes with net radiation calculated using incoming and outgoing radiation, the
so‐called lack of energy–balance closure, remains a long‐standing challenge with EC measurements
(Foken, 2008; Mauder et al., 2020; Zhang et al., 2024). Quality control of millions of data points at an hourly scale
was also challenging, especially when we merged data from various sources, such as in‐situ measurements,
modeled re‐analysis data, and remote sensing‐based estimates. Another major uncertainty arises from the
mismatch between the footprint of EC towers and the grid of remote sensing data which were used to calculate
vegetation indices (Chu et al., 2021). The PFT classification of sites based on a simple PFT classification method
may not accurately represent the vegetation of some of the sites. For example, a site at Alice Springs (AU‐ASM)
in central Australia was classified as a savanna in FLUXNET2015 (Pastorello et al., 2020). In fact, this site is
dominated by a discontinuous canopy of Mulga (Acacia aneura) that has needle leaves and a seasonal understory
grassy layer (Cleverly et al., 2013). This site can be classified as a woody savanna as well. An arctic site in
Bayelva (SJ‐Blv) has a combination of snow, wet grounds, and specific tundra vegetation (Boike et al., 2018)
which were not well represented by the snow classification of FLUXNET2015 (Pastorello et al., 2020). Another
limitation of the data set is that sites are mostly clustered in European and North American countries and, hence do

Figure 10. Box‐plots showing the range of the hourly model performance metric (normalized Nash‐Sutcliffe efficiency, viz.
NNSE), for the sites in different plant–functional types (PFT), and different parameterization experiments. The subplots
show the model performance for (a) P‐model ofMengoli et al. (2022) with drought stress function, parameterized with hourly
data (PWhr model), and (b) the light use efficiency model of Bao, Wutzler, et al. (2022) parameterized with hourly data (Baohr
model). The numbers in parentheses beside the name of each PFT on the x‐axis are the number of sites present in a specific PFT.
The boxes are spanned between the first and third quartiles of NNSE values, and the line in the middle represents the median.
The whiskers show the farthest data point from the box within 1.5× of the interquartile range. The circles represent the outliers
that go beyond the limits of the whiskers. The results of statistical significance testing using a two‐sample Kolmogorov‐Smirnov
test (Hodges, 1958) between a pair of model parameterization strategies (connecting bars over boxplots) are shown as * (0.05 >
p‐value ≥ 0.01), ** (0.01 > p‐value ≥ 0.001), *** (p‐value < 0.001) if the distributions of model performances were not
identical. No bars and star symbols over a pair of boxplots signify that the distributions of model performances from a pair of
parameterization strategies were identical and the null hypothesis could not be rejected (p‐value ≥ 0.05). For, deciduous needle‐
leaf forests (DNF), and areas covered by snow (SNO) only the median value could be shown as these PFTs have only one site.
The vertical dotted gray lines separate each PFT.
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not necessarily represent global ecosystem functioning particularly well due to sampling bias (Papale et al., 2015).
Similarly, some PFTs are represented by very few sites, which makes PFT‐specific parameterization challenging.

4.2. General Performance of Models in Simulating GPP

Mengoli et al. (2022) evaluated the Phr model across 10 sites consisting of boreal forest, temperate deciduous
broadleaf forest, mixed forest, tropical forest, and temperate grassland. They found reasonable performance of Phr
model for these sites. In this study, we extended the evaluation of optimality‐based PWhr and Phr models across a
wide range of sites, representing various vegetation and climate types. We uncovered poor model performance of
the Phr model at many sites, especially at arid sites. Calculating WAI using a simple hydrological model and

Figure 11. Scatter between differences in model performance in simulating peak gross primary production, viz. GPP
(ΔNNSEP90) and annual average of GPP (ΔNNSEy). j1 and j2 are a pair of parameterization strategies for which differences
are calculated in each subplot from (a to j). Each dot in the scatter represents a site. The PWhr model and Baohr model are P‐model
of Mengoli et al. (2022) with drought stress function and the light use efficiency model of Bao, Wutzler, et al. (2022), both were
parameterized with hourly data. The values on top of each subplot indicate the Pearson correlation coefficient (Kirch, 2008) for
respective models.
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inducing a moisture stress function, that is, the introduction of the PWhr model substantially improved model
performance to simulate the annual average of GPP fluxes across many sites, including both water–limited and
energy–limited sites. Inclusion of the moisture stress function in the Phr model improved not only the annual
model performance but also the model performance across all the temporal scales or aggregation levels. This
highlights the importance of representing soil moisture conditions in modeling approaches, which aim to accu-
rately represent ecosystem functioning and vegetation response. Our findings also support another study by
Schaefer et al. (2012) which found mostly poor performance of 26 models in simulating GPP under dry conditions
across EC sites in North America. Even though the drought stress function used in this study does not explicitly
account for long legacy effects, our results still confirmed the substantial effect of drought stress on GPP as found
by numerous other studies (Anderegg et al., 2015; Müller & Bahn, 2022; Z. Yu et al., 2017; X. Yu et al., 2022).
However, the coupling of the hydrological model raised the need to calibrate nine more parameters, which
counters the vision of developing a parameter–sparse approach using theories that demand a lower site or site–
year specific fine–tuning of model parameters (Prentice et al., 2015). Further experimentation is needed to find a
balance between the number of key model parameters, which require calibration, and an accurate representation
of ecosystem processes.

Coming to the differences in model structure, we found that semi‐empirical models (Baohr and Baodd models)
performed statistically better, that is, had a lower value of AIC compared to optimality‐based model (PWhr model) at
hourly and daily scale or aggregations for most of the parameterization experiments even though the semi‐
empirical modeling experiments needed more parameters to be parameterized. At the monthly aggregation
level, the seasonal cycles were also significantly better captured by the parameter–heavy semi‐empirical model
parameterized with daily data (Baodd model) for most of the parameterization experiments. However, at the
annual aggregation level, the optimality‐based model, that is, the PWhr model was comparatively better in most
cases and a more flexible semi‐empirical model with a higher number of parameters did not have a substantial
improvement in annual model performance. In an earlier study, Sims et al. (2005) found that midday gross CO2

flux is highly correlated with daily and 8‐day average of gross CO2 flux and the midday values can be used to
estimate fluxes at higher timescales, that is, at daily and 8‐day. In this study, we also found that both hourly and
daily GPP estimates from the Baohr model, Baodd model, respectively can be used to estimate fluxes at weekly and
monthly scales reliably. However, both models poorly estimated the annual average GPP flux per site.

Though the partial sensitivity functions of environmental variables used in the Baohr model and the Baodd model
were found to be applicable for most of the sites, they can be of many different types and may vary across site
conditions (Bao, Wutzler, et al., 2022). The EC sites were also affected by human management, such as irrigation,
harvesting, and mowing as well as natural disturbances, such as fire, and pest attacks. These factors can affect the
IAV of GPP flux which was estimated from EC measurements. Models used in this study may not be able to
account for all of these factors due to structural limitations. For example, in the hydrological model, we only used
precipitation and ET to calculate the mass balance of water. However, human management (such as irrigation and
drainage) can play an important role, and the WAI estimates in managed sites, such as at an irrigated maize site
(US‐Ne1) may not be accurate.

4.3. The Importance of the Parameterization Approach on Estimating IAV of GPP

We also performed inter–comparison between five different parameterization approaches for both an optimality‐
based model and a semi‐empirical model, and also for a large number of sites. We did these extensive evaluations
to emphasize the importance of model parameterization in capturing the IAV of GPP and gain higher confidence
in our conclusions. Model parameterization largely determined model performances and calibrated parameters
captured the individual characteristics of sites or climatic events of the site–years (J. Wu et al., 2012). Earlier
studies (Groenendijk et al., 2011; Huang et al., 2021) found higher variability of model parameters across sites
within a PFT and detailed parameterization was necessary to better simulate carbon fluxes as there can be var-
iations in vegetation functioning and climatic conditions between sites and a simple PFT classification may not be
enough to account for these variations. Similarly, we also found detailed model parameterization strategies, such
as parameterization specific to site–years or sites comparatively better predicted the annual average of GPP fluxes
and year‐specific parameters explained some parts of the IAV of GPP flux. At hourly and daily scales, we found
slightly better model performance in the case of site–year parameterization compared to site‐specific parame-
terization. This can mainly be due to variations in hydrological conditions, such as drought or excess rainfall
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between years in a site and site–year–specific parameters may be able to better capture these events. However, in
the annual scale model performance was similar between site–year and site‐specific parameterization, even
though we assumed parametrizing models using data from each site–year would be advantageous to capture IAV
of GPP. Changes in parameters between years could reflect structural model issues, such as changes in state
variables not represented correctly in the model (e.g., soil moisture) or absent in the model, but with a possible
role on IAV (e.g., reserve or enzymatic pools, other biogeochemical cycles, such as nitrogen, or biotic factors
promoting, e.g. herbivory). Changes in parameters could also reflect observation artifacts, such as biases, or
changes in instrumentation. We would argue that the difference from site to site–year would reflect possible
enhancements in performance via improvements in model structure, or via statistically learning temporal dy-
namics of parameters, which would add an inference component from the influence of environmental forcing on
the responses from missing processes. Moreover, as the fast rate of change in climatic characteristics has become
more frequent in recent years, developing a generalized model structure to simulate carbon fluxes between years
and/or between sites of similar vegetation types has become even more challenging (Knauer et al., 2023).

The generalized model parameterization strategy, that is, global parameterization was also dominated by PFTs,
such as ENF and GRA which were represented by many sites, and certain PFTs, such as DNF was represented by
only one site in the FLUXNET2015 data set (Pastorello et al., 2020). This may imply that global parameterization
or parameter up‐scaling experiments using the FLUXNET2015 data set (Pastorello et al., 2020) may result in
biased parameter sets that cannot be generalized to the global scale or a weighted site representation may be
necessary in this case. Besides model parameterization, a recent study by Zou et al. (2024) highlighted that the
importance of each independent driver, and their relative contributions vary over time and ecosystem type. The
relative importance of forcing variables may also be another factor besides model parameterization. We also
found both the PWhr model and the Baohr model showed the highest model performance at the sub‐daily scale
mostly for forest sites compared to savannas or grasslands, this in turn led to the poor simulation of IAV at many
sites which are not forests. In most cases, we found that parameterization strategy played an important role in the
variability of model performance across PFTs. For most PFTs, model performance between per–site–year and
global parameterization were statistically different. However, there was no significant difference between model
performance across PFTs between PWhr model and Baohr model.

Though we have demonstrated the capability of the PWhr model that included drought stress and the Baohr model to
simulate the hourly fluxes of GPP, accurate estimation of IAV of GPP fluxes at the site level with these models
requires further developments. Particularly, both models failed to capture the peak GPP in diurnal cycles at many
sites even after model parameterization at a sub‐daily scale and using an additional constraint on the IAV of GPP
in the cost function. These underestimations at an hourly scale may have accumulated to a larger error when the
fluxes were aggregated at an annual scale to study the IAV. We also showed that comparatively better model
performances were achieved when the GPP peaks per site–year were better simulated. These results are similar to
another study by Lin et al. (2023), directed at evaluating terrestrial ecosystem models' capability in explaining the
IAV of GPP which also found an underestimation of GPP. Though the occurrences of peak GPP in a diurnal cycle
can be comparatively smaller, an earlier study by Zscheischler et al. (2016) found that high GPP values during
ideal weather conditions majorly contributed to the IAV of GPP flux. While the study of Zscheischler et al. (2016)
was performed for temperate forests, we found a similar pattern for sites representing diverse climate–vegetation
types in our study. Paschalis et al. (2015) also found that short‐term variability of meteorological forcing can
affect carbon and water fluxes from hourly to annual or even at longer scales, especially if they affect soil water
availability and similar slow processes. Another study by Fatichi and Ivanov (2014) which involved synthetic data
analysis also concluded that random occurrences of favorable weather conditions and subsequent higher carbon
assimilation explain IAV of aboveground NPP better than average weather conditions of a year or growing
season. Unlike some of the previous studies mentioned above which were mainly focused on finding correlations
between GPP peaks and annual GPP from either only observed data or synthetic data, here, we found a direct
correlation between model performance in simulating GPP peaks and model performance in simulating IAV of
GPP. It is also true that some of the peak values found in EC‐derived diurnal GPP can also be outliers, which are
artifacts of data processing algorithms such as the gap‐filling algorithm. It can be hard to distinguish these outliers
from the true peaks of GPP. However, the bias introduced by the gap‐filling algorithm is relatively low (Moffat
et al., 2007). Therefore, it is unlikely that the reasoning behind the general underestimation of GPP peaks by
models is due to the bias introduced during gap‐filling.
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The poor representation of IAV of GPP can be attributed to either limitations of models or model parameterization
strategies. It is important to discover which seasonal phases of the GPP dynamics for particular vegetation types
or climatic zones are not well represented in models simulating the IAV of GPP. In our study, we accounted for
biophysical forcings, such as meteorological variables in our models, and used fAPAR to represent phenological
dynamics. However, if there is a decoupling between the phenological and GPP dynamics, the length since GPP
onset and senescence can be another factor behind IAV, especially during climate extremes, or large meteoro-
logical time shifts. Previous studies such as Wolf, et al. (2016) showed that the net effect of climate extremes, that
is, the 2012 summer drought on carbon uptake was compensated by warmer springs, and increased soil moisture
consumption during warmer springs led to the drought conditions in summer. Similar findings were also reported
by van der Woude et al. (2023) for European forests where the effect of the 2018 drought was offset by prolonged
carbon uptake during warm autumn. Bastos et al. (2020) and Smith et al. (2020) reported a similar finding that the
increased vegetation growth during warm spring was responsible for soil moisture depletion and inflation of the
2018 drought effect in Europe. It is particularly important to focus on the meteorological sensitivity of GPP during
periods of high productivity where improvements in the prediction of high fluxes would tend to improve the
description of IAV. Another aspect could also be to decompose the metric (Gupta et al., 2009) used in the cost
function or develop a more detailed model evaluation to understand which other parts of the time series were not
well constrained during model parameterization.

5. Conclusions

We have demonstrated the capability of an improved version of an optimality‐based model (PWhr model) and a
semi‐empirical LUE model (Baohr and Baodd models) to simulate sub‐daily or daily GPP fluxes across 198 EC
sites, representing 13 different vegetation types including forests, grasslands, savannas, croplands, and tundra.
We also performed various model parameterization strategies to systematically evaluate the factors affecting the
IAV of GPP. The main conclusions from our study are:

1. We found that the semi‐empirical model mostly produced better results at hourly, daily, and monthly scales
compared to the optimality‐based model. At an annual scale, the improvement in the performance of the semi‐
empirical model was not significant even though more parameters were parameterized to flexibly capture the
ecosystem dynamics. Both optimality‐based and semi‐empirical models performed better on hourly, daily,
weekly, and monthly scales compared to annual scale.

2. Model structure was an important factor behind variability in both hourly and annual model performances
when drought stress was not explicitly accounted for in the optimality‐based model. However, differences in
climate classes and parameterization strategies became important factors behind variability in hourly and
annual model performances, respectively, when the previous version of the optimality‐based model (without
drought stress) was not considered in the analysis.

3. Explicit accounting of drought stress in the optimality‐based ecosystem model is a necessity as it proved to be
an important factor in controlling GPP fluxes at all temporal scales including at annual aggregation. The
explicit representation of drought stress not only improved the performance of the optimality‐based model at
arid sites but also at energy–limited sites.

4. Both models performed better mostly at forest sites compared to grasslands or savannas which may also lead to
poor estimation of IAV of GPP at many sites globally.

5. While these models generally performed well in simulating hourly GPP dynamics, the small errors at the sub‐
daily scale, particularly related to the estimation of GPP peaks, accumulated to bigger errors at the annual scale
and led to poor performance of models in explaining the IAV of GPP. We found that comparatively better
annual model performance could be achieved when the peaks of GPP were better simulated.

Our results further suggest the need to focus on sub‐daily GPP dynamics during the various seasonal phases,
especially highly productive ones, toward an improved constraint on GPP sensitivities. Hence, better annual
model performance with a detailed parameterization strategy, such as site–year parameterization, signifies that
temporally varying model parameters are necessary to better capture the variations of annual average GPP and
indicate that ecosystem functioning is not stable between years. These new understandings can guide us toward
developing models and parameterization strategies for simulating the inter–annual variations in ecosystem GPP
more successfully, and improve our understanding of the global carbon cycle response to changing climatic
conditions.
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Appendix A: Data Description

Table A1
Description of Forcing and Model Parameterization Data

Abbreviation Definition Unit Variable name in data set/remarks Reference

GPPEC
a GPP derived from EC based net

ecosystem exchange (NEE) using
night‐time partitioning* method.
Used for model calibration and
evaluation.

μmolCO2 ⋅m− 2 ⋅ s− 1 GPP_NT_VUT_USTAR50 Pastorello et al. (2020); Reichstein
et al. (2005)

GPP_NT_VUT_05 GPP derived from percentile 5 of 40
different estimates of NEE using
night‐time partitioning method.
Used to quantify uncertainty
in GPPEC .

μmolCO2 ⋅m− 2 ⋅ s− 1 GPP_NT_VUT_05 Pastorello et al. (2020); Reichstein
et al. (2005)

GPP_NT_VUT_95 GPP derived from percentile 95 of 40
different estimates of NEE using
night‐time partitioning method.
Used to quantify uncertainty
in GPPEC .

μmolCO2 ⋅m− 2 ⋅ s− 1 GPP_NT_VUT_95 Pastorello et al. (2020); Reichstein
et al. (2005)

GPP_DT_VUT_05 GPP derived from percentile 5 of 40
different estimates of NEE using
daytime partitioning method. Used
to quantify uncertainty in GPPEC .

μmolCO2 ⋅m− 2 ⋅ s− 1 GPP_DT_VUT_05 Pastorello et al. (2020); Lasslop
et al. (2010)

GPP_DT_VUT_95 GPP derived from percentile 95 of 40
different estimates of NEE using
daytime partitioning method. Used
to quantify uncertainty in GPPEC .

μmolCO2 ⋅m− 2 ⋅ s− 1 GPP_DT_VUT_95 Pastorello et al. (2020); Lasslop
et al. (2010)

σNEE Random uncertainty for NEE μmolCO2 ⋅m− 2 ⋅ s− 1 NEE_VUT_USTAR50_RANDUNC Pastorello et al. (2020)

LE Latent heat flux W ⋅m− 2 LE_F_MDS Pastorello et al. (2020)

σLE Random uncertainty for latent heat flux W ⋅m− 2 LE_RANDUNC Pastorello et al. (2020)

SW_INb Incoming shortwave radiation W ⋅m− 2 SW_IN_F Pastorello et al. (2020)

NETRADb, c Net radiation W ⋅m− 2 NETRAD Pastorello et al. (2020)

SW_IN_POT Potential incoming shortwave radiation W ⋅m− 2 SW_IN_POT Pastorello et al. (2020)

PPFD_INa Incoming photosynthetic photon flux
density

μmol photons ⋅m− 2 ⋅ s− 1 PPFD_IN gap‐filled
with 2.04 × SW_IN

Pastorello et al. (2020); see
Section 3.4.2 of Stocker
et al. (2020) for the gap‐filling
equation

Tb Air temperature °C TA_F_MDS Pastorello et al. (2020)

VPDb Vapor pressure deficit Pa VPD_F_MDS Pastorello et al. (2020)

Pb,d Precipitation mm ⋅ h− 1 or mm ⋅ d− 1 P Pastorello et al. (2020)

CO2 Atmospheric CO2 concentration dry air
mole fractions from quasi‐
continuous measurements at
Mauna Loa

ppm CO2_mlo_surface‐
insitu_1_ccgg_DailyData
(interpolated linearly to hourly
scale). The measurements from
Mauna Loa were used for all sites
as the CO2 concentration
measurements at EC sites are
often noisy and discontinuous.

Thoning et al. (2021)

elev Site elevation m a.s.l. Collected from literature Bao, Wutzler, et al. (2022)

ETLE
a Evapotranspiration derived from LE flux mm ⋅ h− 1 or mm ⋅ d− 1 Calculated from LE with a dependency

on T
Henderson‐Sellers (1984)

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004697

DE ET AL. 28 of 44

 19422466, 2025, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004697 by E
T

H
 Z

urich, W
iley O

nline L
ibrary on [06/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Appendix B: Data Screening for Model Parameterization
We used only good–quality data to calibrate model parameters. At hourly scale, we selected GPPEC and ETLE as
good quality data when the values of their respective QC flag were 1 (Table A1). At the daily scale, we considered
a GPPEC and ETLE data point as good when the value of the QC flag was greater than 0.8. We also removed any
data gaps from observed and simulated data, σNEE, and σLE (Table A1). There were certain negative values in our
GPPEC data, as it was calculated using night‐time based partitioning method (Reichstein et al., 2005). In this case,
if a negative GPPEC value occurred, when the SW_IN (Table A1) is zero that is, during night hours, we replaced

Table A1
Continued

Abbreviation Definition Unit Variable name in data set/remarks Reference

σET Random uncertainty for ET_LE mm ⋅ h− 1 or mm ⋅ d− 1 Calculated from LE_RANDUNC with a
dependency on T

Henderson‐Sellers (1984)

PET Potential evapotranspiration mm ⋅ h− 1 or mm ⋅ d− 1 Calculated from T , NETRAD and elev
using the method of Priestley and
Taylor

Priestley and Taylor (1972)

CI Cloudiness index – Calculated as 1 − ( SW_IN
SW_IN_POT) Bao, Wutzler, et al. (2022); Fu

and Rich (1999); Turner et al.
(2006)

WAI Water availability indicator mm Described in Text S1 of Supporting
Information S1

Bao, Wutzler, et al. (2022);
Tramontana et al. (2016);
Trautmann et al. (2018)

W Soil water supply mm ⋅mm− 1 Calculated as WAI
AWC (AWC is defined in

Table 1)
Bao, Wutzler, et al. (2022)

NDVI Normalized difference vegetation index – Daily NDVI from FluxnetEO v2
(MODIS) was linearly interpolated
to hourly

Walther et al. (2022, 2023)

f APAR Fraction of incident photosynthetic
photon flux that is absorbed by
vegetation

– Linear relationship between NDVI and
f APAR was

assumed. {
NDVI, if NDVI > 0

0, if NDVI ≤ 0

Bao, Wutzler, et al. (2022);
Myneni et al. (1997)

QCa Data quality flags – 1.0 (good quality), 0.5 (medium quality),
and 0.0 (bad quality) in the case of
hourly data, which is the fraction of
good quality measured or gap‐filled
data from two half‐hours. In the case
of daily, QC can have any values
between 0.0 and 1.0, which is a
fraction representing the percentage
of good quality measured or gap‐
filled data in a day. The daily data
withQC > 0.8 was considered good.

Pastorello et al. (2020); Nelson
et al. (2024)

Note. *We preferred the night‐time partitioning (Reichstein et al., 2005) over daytime partitioning (Lasslop et al., 2010) as only respiration is modeled in this case and
GPP is derived as the difference between measured NEE and respiration. Whereas, in the daytime partitioning method, GPP is modeled as well and can have prediction
errors due to uncertain model parameters. aFor GPPEC , the QC flags of NEE, and for ETLE the QC flags of LE were used, as they were derived from the respective
variables. QC flags of SW_IN were used to determine bad and medium quality data of PPFD_IN, which were replaced with a gap‐filling procedure. bBad, medium
quality (value of QC is 0 and 0.5) data and gaps were filled with downscaled (Besnard et al., 2019) ERA5 (Hersbach et al., 2023) or ERA‐Interim v2.0 data (Berrisford
et al., 2011). cWe have collected good quality SW_IN and NETRAD values from all the sites and fitted a linear regression model using the RANdom SAmple Consensus
(RANSAC) algorithm (Fischler & Bolles, 1981) to determine the relation between them. The fitted equation (NETRAD = 0.7066 × SW_IN − 0.1345) was used to fill
gaps in NETRAD using SW_IN. The gap‐filling with regression was only applied for a few sites at hourly scale. dAt hourly scale, the data gaps or bad quality data in P
were filled by distributing the daily downscaled P (Besnard et al., 2019) from ERA‐Interim v2.0 (Berrisford et al., 2011) for a certain day to the hourly timesteps, based on
hourly P from gridded ERA5 data (Hersbach et al., 2023).
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those data points with 0 and used them in the cost function. If the negative GPPEC occurred during day hours, we
excluded them.

Appendix C: Data Screening for Evaluation of Model Performance
The good quality data at an hourly scale were selected using the same criteria described in Appendix B. The data
screening at a daily scale was also similar to Appendix B, when the LUE model was parameterized using daily
data. For all other cases, we assigned a flag (0 = not considered, 1 = considered) to identify which data points
were considered during model parameterization. We aggregated this flag to daily, weekly, monthly, and annual
scales by taking averages. Then this flag indicated the fraction of good quality data used to calculate a data point in
a certain temporal resolution. We only used data points at certain temporal resolutions which were calculated
using more than 50% (flag value > 0.5) good quality data points from hourly/daily resolution. We calculated
monthly, and annual model performance metrics for a certain site if at least three data points were present. We
couldn't calculate annual metrics for 76 and 85 sites due to low numbers of good quality site–years when the
annual data was aggregated from hourly, and daily data, respectively. The monthly metrics were not calculated for
the three sites due to the same reason when they were aggregated from daily data.

Appendix D: Median Values of Model Performance
The median values of the model performance metric, that is, NNSE which are plotted in Figure 2 are summarized
in Table D1.

Appendix E: Mean Values of Fraction of Site–Years per Site forWhich Simulated GPP
Was Within Uncertainty Range
The mean values of fractions of site–years per site for which the annual average of GPPsim was within the un-
certainty range of GPPEC are plotted in Figure 3 and are summarized in Table E1.

Table D1
Median NNSE Obtained at Each Modeling Experiment at Hourly/Daily Scale and Annual Aggregations

Temporal scale/ aggregation Models

Parameterization strategies

Per site–year Per site using CostIAV Per site Per PFT Global

Hourly/ daily scale PWhr 0.827 0.799 0.805 0.738 0.712

Phr 0.478 0.470 0.469 0.461 0.490

Baohr 0.855 0.837 0.838 0.758 0.730

Baodd 0.837 0.796 0.796 0.686 0.642

Annual aggregation PWhr 0.543 0.405 0.373 0.201 0.143

Phr 0.018 0.019 0.018 0.018 0.019

Baohr 0.628 0.460 0.460 0.187 0.189

Baodd 0.704 0.449 0.475 0.233 0.151

Table E1
Mean Values of Fractions of Site–Years per Site for Which Annual Average of Simulated Gross Primary Production (GPPsim)
Was Within the Uncertainty Range of Eddy‐Covariance Derived GPP (GPPEC)

Models

Parameterization strategies

Per site–year Per site using CostIAV Per site Per PFT Global

PWhr 0.869 0.757 0.773 0.481 0.409

Phr 0.123 0.128 0.131 0.129 0.131

Baohr 0.931 0.831 0.840 0.531 0.430

Baodd 0.942 0.835 0.838 0.507 0.389
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Data Availability Statement
The codes that were used to perform all the necessary analyses and plot all the figures in this study are available at
https://doi.org/10.5281/zenodo.13729514 (De, 2025). The data from eddy covariance sites are available through
FLUXNET at https://fluxnet.org/data/fluxnet2015‐dataset/, and the Digital Object Identifier (DOI) of the data set
for each site are listed in the Table S8 of Supporting Information S1 (Pastorello et al., 2020; FLUXNET.
org, 2024a). The FluxnetEO MODIS version 2 data set is available at https://doi.org/10.18160/0KWD‐
3RRW (Walther et al., 2022, 2023). The ERA5 data set is available at https://doi.org/10.24381/cds.adbb2d47
Hersbach et al. (2023). The ERA‐Interim v2.0 data set has been currently archived by ECMWF; however, it can
be accessed following these instructions (Berrisford et al., 2011). Atmospheric CO2 measurements at Mauna Loa
observatory are available at https://doi.org/10.15138/yaf1‐bk21 (Thoning et al., 2021).
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