2. [30P] AC-Aufgaben

(a) [23P] Schwingkreis

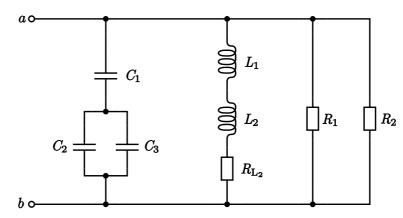


Abbildung 4: Schaltung zu Aufgabe 2a.

Die Schaltung in Abbildung 4 zeigt einen RLC-Schwingkreis. Die Induktivität L_2 modelliert zusammen mit dem Widerstand R_{L_2} eine nicht-ideale Spule. Folgende Werte sind gegeben:

$C_1 = 30 \text{nF}$	$L_1=1 \mathrm{mH}$
$C_2 = 20 \text{nF}$	$L_2 = 2.5 \text{mH}$
$C_3 = 50 \text{nF}$	R_1 =80 k Ω
	$R_2 = 120 \mathrm{k}\Omega$

- i. [1P] Handelt es sich um einen Serie- oder Parallelschwingkreis?
- ii. [7P] Vereinfachen Sie die Schaltung aus Abbildung 4 so weit wie möglich. Zeichnen Sie den vereinfachten Schwingkreis und geben Sie die Werte der neuen Elemente an.
- iii. [2P] Berechnen Sie die Resonanzfrequenz f_0 des Schwingkreises.
- iv. [3P] Bei Resonanz lässt sich der serielle Widerstand R_{L_2} in einen parallelen Widerstand R_{L_p} umwandeln (siehe Abbildung 6).

Die Impedanz $Z_{\rm in}$ zwischen den Klemmen a und b beträgt bei Resonanz $Z_{\rm in}=R_{\rm x}=8\,{\rm k}\Omega$. Berechnen Sie den Widerstand $R_{\rm Lp}$.

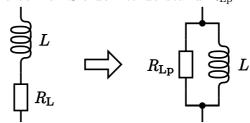


Abbildung 6: Umwandlung des Spulenwiderstandes bei Resonanz.

- v. [2P] Berechnen Sie die Güte des Schwingkreises.
- vi. [5P] Berechnen Sie den Widerstand $R_{\rm L_2}$.
- vii. [3P] Wie viel betragen die Güten Q_{L_1} und Q_{L_2} der Spulen L_1 bzw. L_2 bei Resonanz?