Basisprüfung D-ITET

Name, Vorname:

Matrikel-Nr.:

Aufgabe NUS I-2: Strommessung mit koaxialem Messwiderstand

20 Punkte

Gegeben ist der in Fig. 2 dargestellte Messwiderstand, welcher zur niederinduktiven Strommessung eingesetzt werden kann. Gemessen wird die Spannung $U_{\rm AB}$ zwischen den Abgriffen A und B am Übergang von einem Innenleiter mit Durchmesser $D_{\rm Innen}=5\,{\rm mm}$ auf einen zylindrischen Aussenleiter mit Innendurchmesser $D_{\rm Aussen}=2\,{\rm cm}$. Mit Hilfe des Widerstands kann daraus auf den zu messenden Strom I geschlossen werden. Der Messwiderstand sei eine kreisförmige Scheibe mit der Dicke $d=3\,{\rm mm}$ und der Leitfähigkeit $\kappa_{\rm R}=12.0\cdot 10^3\,{\rm S/m}$. Die Leiter werden als ideal elektrisch leitfähig angenommen.

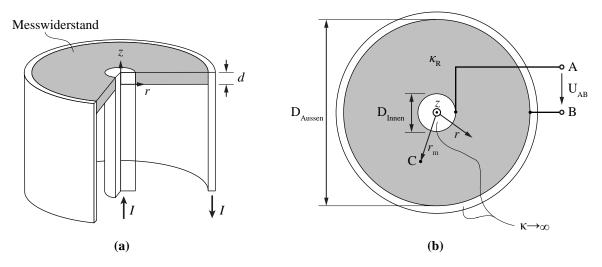


Fig. 2: Strommessung mit koaxialem Messwiderstand: Schnittzeichnung (a) und Draufsicht (b).

a) Berechnen Sie algebraisch die im Messwiderstand vorliegende Stromdichte J(r) für einen allgemeinen Strom I. Die Stromdichte kann über der Dicke d als konstant angenommen werden.

(3 Pkt.)

b) Berechnen Sie algebraisch das im Messwiderstand vorliegende elektrische Feld E(r). Welche Spannung U_{AB} liegt zwischen den Punkten A und B an (algebraisch)? Wie gross ist der Widerstand R der Scheibe zwischen den Punkten A und B (algebraisch und numerisch)?

(6 Pkt.)

c) Durch Toleranzen in der Fertigung des Zylinderrohrs kann der Aussendurchmesser D_{Aussen} um bis zu $\Delta D_{\text{Aussen}} = \pm 3 \,\text{mm}$ vom vorgesehenen Wert abweichen. Wie gross ist der Widerstand R' bei maximalem Fehler? Berechnen Sie den maximalen absoluten Fehler ΔR im Widerstandswert, welcher aufgrund der Fertigungstoleranzen auftreten kann.

(3 Pkt.)

d) Wie gross ist der relative Fehler, welcher in der Strommessung durch die Fertigungstoleranzen maximal auftreten kann?

(3 Pkt.)

e) Bei welchem Radius $r_{\rm m}$ gilt $U_{\rm AC}=U_{\rm CB}=\frac{U_{\rm AB}}{2}$? Geben Sie das Resultat algebraisch und numerisch an.

(5 Pkt.)

Name, Vorname:

Matrikel-Nr.:

Aufgabe NUS I-2: Leistungsanpassung

20 Punkte

Gegeben ist eine Gleichstromschaltung gemäss Fig. 2 (a), die aus der Stromquelle I=3 A, der Spannungsquelle U=12 V und vier Widerständen besteht. Der jeweilige Widerstandswert ist ein ganzzahliges Vielfaches des Grundwertes $R=12\,\Omega$.

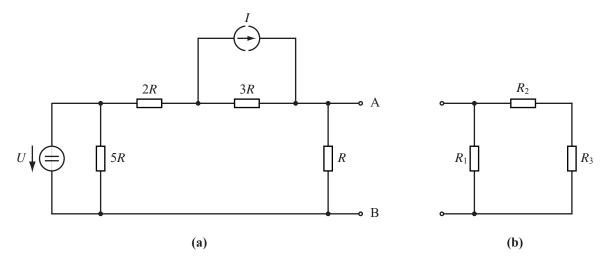


Fig. 2: Gleichstromschaltung (a) und Belastungsnetzwerk (b).

a) Zeichnen Sie für die Gleichstromschaltung in Fig. 2 (a) zunächst das elektrische Ersatzschaltbild einer Ersatzspannungsquelle mit Innenwiderstand bezüglich der Klemmen A und B. Berechnen Sie dann algebraisch den Innenwiderstand $R_{\rm E}$ und die Leerlaufspannung $U_{\rm E}$ dieser Ersatzspannungsquelle als Funktion von R, I und U.

(8 Pkt.)

b) Geben Sie Zahlenwerte für $R_{\rm E}$, $U_{\rm E}$ und den Kurzschlussstrom $I_{\rm E}$ der Ersatzspannungsquelle aus Teilaufgabe a) an.

(4 Pkt.)

Für alle weiteren Teilaufgaben gelte nun $R_{\rm E}=5\,\Omega$ und $U_{\rm E}=15\,{\rm V}.$

An den Klemmen A und B der Gleichstromschaltung wird ein Belastungsnetzwerk gemäss Fig. 2 (b) angeschlossen. Es besteht aus den beiden Widerständen $R_1 = 20 \Omega$ und $R_2 = 11.5 \Omega$ sowie dem unbekannten Widerstand R_3 .

c) Für welchen Wert des Widerstands R_3 wird die in R_2 (!) umgesetzte Leistung maximal?

(4 Pkt.)

d) Wie gross ist mit dem Ergebnis aus Teilaufgabe \mathbf{c}) der Spannungsabfall über dem Widerstand R_2 und welche Leistung wird von R_2 aufgenommen?

(4 Pkt.)

Basisprüfung D-ITET

Prof. J. W. Kolar

Name, Vorname:

Matrikel-Nr.:

Aufgabe NUS I-3: Temperaturmessung

20 Punkte

Mit der in Fig. 3 dargestellten Brückenschaltung soll ein Temperaturmessgerät aufgebaut werden. Zur Anzeige wird ein Spannungsmessinstrument verwendet, das die Brückenspannung $U_{\rm m}$ abgreift. Für das Spannungsmessinstrument kann ein unendlicher Innenwiderstand angenommen werden. Die Temperaturmessung soll in einem Bereich von $-20\,^{\circ}$ C bis 50 $^{\circ}$ C einsetzbar sein. Als Temperatursensor wird ein temperaturabhängiger Widerstand $R(\vartheta)$ eingesetzt, dessen Widerstands Temperatur Kennlinie durch

$$R(\vartheta) = R_0(1 + \alpha(\vartheta - \vartheta_0))$$

mit den Parametern

 $R_0 = 1 \, \mathrm{k}\Omega$ Widerstand bei ϑ_0 $\vartheta_0 = 20 \, ^{\circ}\mathrm{C}$ Referenztemperatur $\alpha = 5 \cdot 10^{-3} \; \mathrm{K}^{-1}$ Temperaturkoeffizient

beschreiben wird. Ausserdem gilt $R_1 = 1 \text{ k}\Omega$.

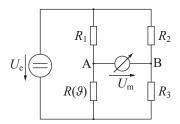


Fig. 3: Brückenschaltung zur Temperaturmessung.

a) Geben Sie zunächst die Spannung $U_{R\vartheta}$ und die Leistung $P_{R\vartheta}$ am Widerstand $R(\vartheta)$ algebraisch als Funktion von $U_{\rm e}$ an. Bei welcher Temperatur tritt an $R(\vartheta)$ die höchste Verlustleistung auf und welchen Wert weist $R(\vartheta)$ bei dieser Temperatur auf? Bestimmen Sie die Spannung $U_{\rm e}$ so, dass die im Messbereich maximal auftretende Verlustleistung am Messwiderstand $R(\vartheta)$ den Wert $P_{\rm max} = 50\,{\rm mW}$ erreicht.

(7 Pkt.)

Für alle weiteren Teilaufgaben gelte nun $U_e = 12 \,\mathrm{V}$.

b) Das Spannungsmessinstrument soll bei einer Temperatur von $\vartheta_0 = 0$ °C einen Wert von $U_0 = 0$ V anzeigen. Gleichzeitig soll die Verlustleistung der beiden Widerstände R_2 und R_3 zusammen einen Wert von $P_{(R_2,R_3)} = 10$ mW nicht überschreiten $(P_{R_2} + P_{R_3} = 10$ mW). Berechnen Sie R_2 und R_3 .

(6 Pkt.)

Verwenden Sie für die folgende Teilaufgabe $R_2 = 22737 \Omega$ und $R_3 = 20463 \Omega$.

c) Die Widerstände R_1 , R_2 und R_3 weisen bauartbedingt jeweils eine Toleranz von $\pm 1\%$ auf. Wie gross ist der maximal auftretende Temperaturmessfehler aufgrund dieser Widerstandstoleranz und bei welcher Temperatur tritt dieser auf? Beachten Sie, dass alle Widerstände gleichzeitig Abweichungen aufweisen können.

(7 Pkt.)

Name, Vorname:

 ${\it Matrikel-Nr.:}$

Aufgabe NUS I-2: Brückenschaltung

20 Punkte

Gegeben ist eine DC-Brückenschaltung gemäss **Fig. 2** bestehend aus vier Widerständen $R=15\,\Omega$, der Spannungsquelle $U=12\,\mathrm{V}$ und der Stromquelle $I=1\,\mathrm{A}$. An den Klemmen A und B der Brückenschaltung kann ein Widerstandsnetzwerk, das aus den beiden Widerständen $R_1=390\,\Omega$, $R_2=1.2\,\mathrm{k}\Omega$ und dem einstellbaren Lastwiderstand R_3 besteht, angeschlossen werden.

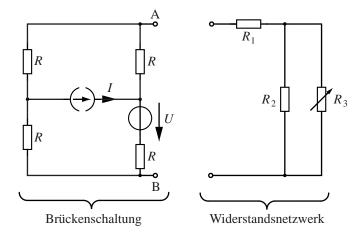


Fig. 2: DC-Brückenschaltung und Widerstandsnetzwerk.

Betrachten Sie für Teilaufgabe a) nur die Brückenschaltung ohne das Widerstandsnetzwerk.

a) Das Verhalten der Brückenschaltung bezüglich der Klemmen A und B soll durch eine Ersatzspannungsquelle mit der Leerlaufspannung $U_{\rm qE}$ und dem Innenwiderstand $R_{\rm iE}$ modelliert werden. Berechnen Sie zunächst algebraische Ausdrücke für $U_{\rm qE}$ und $R_{\rm iE}$ als Funktion von U, I und R. Geben Sie anschliessend Zahlenwerte für die Leerlaufspannung, den Innenwiderstand, sowie für den Kurzschlussstrom an.

(11 Pkt.)

Berücksichtigen Sie bei den folgenden Teilaufgaben nun das Widerstandsnetzwerk. Rechnen Sie in den folgenden Teilaufgaben mit $U_{\rm qE}=5\,{\rm V}$ und $R_{\rm iE}=10\,{\rm \Omega}$.

b) Berechnen Sie den numerischen Wert des Lastwiderstands R_3 so, dass die in R_3 umgesetzte Leistung maximal wird.

(4 Pkt.)

c) Wie gross ist in diesem Fall die Spannung am Widerstand R_3 und welche Leistung wird von R_3 aufgenommen? Berechnen Sie die numerischen Werte.

(5 Pkt.)

Prof. J. W. Kolar

Name, Vorname:

Matrikel-Nr.:

Aufgabe NUS I-1: Plattenkondensator

25 Punkte

Gegeben ist ein Plattenkondensator gemäss **Fig. 1(a)**. Die Abmessungen des Plattenkondensators sind mit der Länge l_0 und der Tiefe t (senkrecht zur Zeichenebene) gegeben. In der Mitte des Kondensators befindet sich ein Dielektrikum mit der Dielektrizitätskonstante ε_1 und der Dicke d/3. Zunächst werde die Spannung U_0 wie eingezeichnet angelegt. Vernachlässigen Sie bei allen Berechnungen sämtliche Randeffekte und verwenden Sie $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{A\,s/(V\,m)}$.

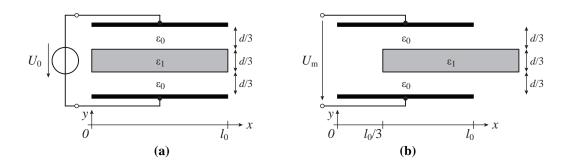


Fig. 1: Plattenkondensator mit unterschiedlichen Dielektrika.

a) Berechnen Sie die elektrische Flussdichte und das elektrische Feld (Betrag und Richtung) in den einzelnen Dielektrika in Abhängigkeit der Ladung Q des Kondensators.

(4 Pkt.)

b) Berechnen Sie die Ladung Q des Kondensators, die elektrische Flussdichte und das elektrische Feld in den einzelnen Dielektrika in Abhängigkeit der angelegten Spannung U_0 und der Kondensatorgeometrie.

(5 Pkt.)

c) Berechnen Sie die Gesamtkapazität C_{ges} der Anordnung.

(2 Pkt.)

Nun wird die Spannungsquelle U_0 vom Kondensator getrennt, wobei der Kondensator geladen bleibt. Zusätzlich wird das Dielektrikum mit der Dielektrizitätskonstante ε_1 gemäss **Fig. 1(b)** um $l_0/3$ nach rechts verschoben und es wird die Spannung $U_{\rm m}$ gemessen.

d) Zeichnen Sie das elektrische Ersatzschaltbild der entstehenden Anordnung und bestimmen Sie die Teilkapazitäten des linken $(0 < x < l_0/3)$ und rechten $(l_0/3 < x < l_0)$ Kondensatorteils. Betrachten Sie dabei nur den Bereich $0 < x < l_0$.

(6 Pkt.)

e) Vor dem Abtrennen der Spannungsquelle sei $U_0=15\,\mathrm{kV}$ gewesen. Weiterhin gilt $\varepsilon_{r,1}=3.5$ und $\varepsilon_{r,0}=1$. Berechnen Sie die resultierende Spannung U_m algebraisch und numerisch. Ist U_m grösser oder kleiner als U_0 ? Wie verteilt sich die Ladung über die Kondensatorplatten? Bestimmen Sie dabei algebraisch die Ladung auf dem linken $(0 < x < l_0/3)$ und auf dem rechten $(l_0/3 < x < l_0)$ Kondensatorteil.

(8 Pkt.)

Basisprüfung D-ITET

Prof. Dr. J.W. Kolar

Aufgabe Nr.	Thema	Punkte max.	Punkte	Visum 1	Visum 2
NuS I-4	Magnetischer Kreis	20			
Name:		ETH-Nr.:		_	

Aufgabe NuS I-4: Magnetischer Kreis und Induktivität

Gegeben sei die Anordnung einer Induktivität, welche gemäss **Fig. 4.1** aus einer Wicklung mit Windungszahl N auf einem dreischenkligen Kern besteht. Die Schenkel **1** und **2** des Kerns weisen je einen Luftspalt mit den Spaltbreiten δ_1 bzw. δ_2 auf. Alle Querschnittsflächen des Kerns sind gleich gross und besitzen die Abmessungen a=5 mm und b=12 mm. Sie dürfen von einer relativen Permeabilität $\mu_r \to \infty$ des Kernmaterials ausgehen.

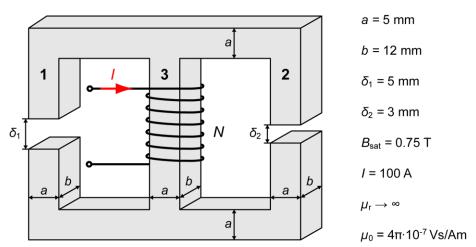


Fig. 4.1: Wicklung auf dreischenkligem Kern.

- Zeichnen Sie das zugehörige Reluktanzmodell der Anordnung in Fig. 4.1 und berechnen Sie die darin enthaltenen magnetischen Widerstände.

 (8 Pkt.)
- b) Wie gross kann die Windungszahl N der Induktivität maximal gewählt werden, damit für die magnetische Flussdichte noch folgendes gilt: $B < B_{sat}$. (8 Pkt.)
- c) Berechnen Sie die Induktivität L der Anordnung für das in b) berechnete N_{max} . (2 Pkt.)
- d) Was passiert (qualitativ), wenn die Spaltbreite $δ_1$ halbiert wird ($N = N_{max}$)? (2 Pkt.)